The artificial intelligence technologies in Industry 4.0: A taxonomy, approaches, and future directions

被引:27
作者
Alenizi, Farhan A. [1 ]
Abbasi, Shirin [2 ]
Mohammed, Adil Hussein [3 ]
Rahmani, Amir Masoud [4 ]
机构
[1] Prince Sattam Bin Abdulaziz Univ, Coll Engn, Elect Engn Dept, Al Kharj 11942, Saudi Arabia
[2] Islamic Azad Univ, Comp Engn Dept, Sci & Res Branch, Tehran, Iran
[3] Cihan Univ Erbil, Fac Engn, Dept Commun & Comp Engn, Erbil, Kurdistan Regio, Iraq
[4] Natl Yunlin Univ Sci & Technol, Future Technol Res Ctr, 123 Univ Rd,Sect 3, Touliu 64002, Yunlin, Taiwan
关键词
Industry; 4.0; Artificial intelligence; Machine learning; Internet of Things;
D O I
10.1016/j.cie.2023.109662
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Industry 4.0 transforms the manufacturing sector with dynamic, networked, complex industrial environments. These environments generate vast amounts of data and require technology and Artificial Intelligence (AI) to achieve intelligent, efficient, and sustainable production processes. This paper comprehensively reviews 45 articles on AI and Industry 4.0 integration. We propose a taxonomy for AI in Industry 4.0 and classify approaches into Industry 4.0 design and product quality control methods. Our analysis shows that 58% of papers use product quality control methods. Besides, this paper identifies challenges and open issues by illuminating the current landscape. The findings showed that machine learning is the most common AI method for improving Industry 4.0 with 41%, and Python is the most used tool for simulation.
引用
收藏
页数:21
相关论文
共 57 条
[1]   From Artificial Intelligence to Explainable Artificial Intelligence in Industry 4.0: A Survey on What, How, and Where [J].
Ahmed, Imran ;
Jeon, Gwanggil ;
Piccialli, Francesco .
IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2022, 18 (08) :5031-5042
[2]  
Amejwal M., 2022, 2022 14 INT C LOG SU, P1
[3]   Remote Big Data Management Tools, Sensing and Computing Technologies, and Visual Perception and Environment Mapping Algorithms in the Internet of Robotic Things [J].
Andronie, Mihai ;
Lazaroiu, George ;
Karabolevski, Oana Ludmila ;
Stefanescu, Roxana ;
Hurloiu, Iulian ;
Dijmarescu, Adrian ;
Dijmarescu, Irina .
ELECTRONICS, 2023, 12 (01)
[4]   Adoption paths of digital transformation in manufacturing SME [J].
Battistoni, Elisa ;
Gitto, Simone ;
Murgia, Gianluca ;
Campisi, Domenico .
INTERNATIONAL JOURNAL OF PRODUCTION ECONOMICS, 2023, 255
[5]   A RAMI 4.0 View of Predictive Maintenance: Software Architecture, Platform and Case Study in Steel Industry [J].
Bousdekis, Alexandros ;
Lepenioti, Katerina ;
Ntalaperas, Dimitrios ;
Vergeti, Danai ;
Apostolou, Dimitris ;
Boursinos, Vasilis .
ADVANCED INFORMATION SYSTEMS ENGINEERING WORKSHOPS (CAISE 2019), 2019, 349 :95-106
[6]   KSPMI: A Knowledge-based System for Predictive Maintenance in Industry 4.0 [J].
Cao, Qiushi ;
Zanni-Merk, Cecilia ;
Samet, Ahmed ;
Reich, Christoph ;
de Beuvron, Francois de Bertrand ;
Beckmann, Arnold ;
Giannetti, Cinzia .
ROBOTICS AND COMPUTER-INTEGRATED MANUFACTURING, 2022, 74
[7]   Machine Learning in Manufacturing towards Industry 4.0: From 'For Now' to 'Four-Know' [J].
Chen, Tingting ;
Sampath, Vignesh ;
May, Marvin Carl ;
Shan, Shuo ;
Jorg, Oliver Jonas ;
Aguilar Martin, Juan Jose ;
Stamer, Florian ;
Fantoni, Gualtiero ;
Tosello, Guido ;
Calaon, Matteo .
APPLIED SCIENCES-BASEL, 2023, 13 (03)
[8]   Blockchain technology adoption for managing risks in operations and supply chain management: evidence from the UK [J].
Chowdhury, Soumyadeb ;
Rodriguez-Espindola, Oscar ;
Dey, Prasanta ;
Budhwar, Pawan .
ANNALS OF OPERATIONS RESEARCH, 2023, 327 (01) :539-574
[9]  
Corti D, 2021, 2021 IEEE INT C ENG, P1
[10]  
D'Aloia M, 2020, 2020 IEEE INTERNATIONAL WORKSHOP ON METROLOGY FOR INDUSTRY 4.0 & IOT (METROIND4.0&IOT), P654, DOI [10.1109/metroind4.0iot48571.2020.9138275, 10.1109/MetroInd4.0IoT48571.2020.9138275]