High compaction and physical graphitization of CNT bundles and network via extreme-load compression using laser-induced shockwave

被引:2
作者
Ha, Jeonghong [1 ]
Noh, Jihun [2 ]
Jung, Yung Joon [3 ]
Liang, Wentao [3 ]
Choi, Tae-Y. [4 ]
Kim, Jaehee [2 ]
Kim, Dongsik [2 ]
机构
[1] Korea Inst Ind Technol KITECH, Adv Forming Proc R&D Grp, Ulsan 44413, South Korea
[2] Pohang Univ Sci & Technol POSTECH, Dept Mech Engn, Pohang 37673, South Korea
[3] Northeastern Univ, Dept Mech & Ind Engn, Boston, MA 02115 USA
[4] Univ North Texas, Dept Mech Engn, Denton, TX 76207 USA
基金
新加坡国家研究基金会;
关键词
Carbon nanotube fiber; Graphitization; Electrical conductivity; Laser-induced shockwave; Tensile strength; Thermal conductivity; CARBON NANOTUBE FIBERS; THERMAL-CONDUCTIVITY; MECHANICAL-PROPERTIES; TRANSPORT; FILMS; STRENGTH; ALIGNMENT; SHEETS; ENHANCEMENT; RIBBONS;
D O I
10.1016/j.carbon.2023.118219
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The physical properties of carbon nanotube (CNT) networks, which are one-dimensional assemblies of CNTs, are still far short of the theoretical limits of individual CNTs. These lowered physical properties of CNT networks are mainly due to their high porosity and relatively weak inter-tube load/electron/phonon transfer efficiency at van der Waals junctions between CNTs and their bundles. We present a simple post-treatment technique utilizing high-intensity laser-induced shockwaves of up to similar to 3 GPa that effectively densify CNT bundles and networks and physically transform CNT bundles into flattened multilayered graphene nanoribbons. CNT assemblies were selectively modified without chemical agents, and the network properties could be tuned by adjusting the laser compression intensity. After laser shockwave compaction, the CNT network structure showed two and three times higher specific strength and modulus than the as-prepared CNT networks. Furthermore, the thermal and electrical conductivities of the CNT networks were also amplified by 400-500% after laser shock compression. These enhancements can be explained by the substantial densification of CNT networks and physically activated graphitization leading to increased load/electron/phonon transfer between flattened CNTs and their bundles.
引用
收藏
页数:9
相关论文
共 77 条
[1]   Collapsed carbon nanotubes as building blocks for high-performance thermal materials [J].
Al-Ghalith, Jihong ;
Xu, Hao ;
Dumitrica, Traian .
PHYSICAL REVIEW MATERIALS, 2017, 1 (05)
[2]   Pressure-induced radial collapse in few-wall carbon nanotubes: A combined theoretical and experimental study [J].
Alencar, R. S. ;
Cui, Wenwen ;
Torres-Dias, A. C. ;
Cerqueira, Tiago F. T. ;
Botti, Silvana ;
Marques, Miguel A. L. ;
Ferreira, O. P. ;
Laurent, Ch ;
Weibel, A. ;
Machon, D. ;
Dunstan, D. J. ;
Souza Filho, A. G. ;
San-Miguel, A. .
CARBON, 2017, 125 :429-436
[3]   Thermal transport in MWCNT sheets and yarns [J].
Aliev, Ali E. ;
Guthy, Csaba ;
Zhang, Mei ;
Fang, Shaoli ;
Zakhidov, Anvar A. ;
Fischer, John E. ;
Baughman, Ray H. .
CARBON, 2007, 45 (15) :2880-2888
[4]  
AZoM, 2013, AISI 1018 Carbon Steel (UNS G10180)
[5]   Strong, Light, Multifunctional Fibers of Carbon Nanotubes with Ultrahigh Conductivity [J].
Behabtu, Natnael ;
Young, Colin C. ;
Tsentalovich, Dmitri E. ;
Kleinerman, Olga ;
Wang, Xuan ;
Ma, Anson W. K. ;
Bengio, E. Amram ;
ter Waarbeek, Ron F. ;
de Jong, Jorrit J. ;
Hoogerwerf, Ron E. ;
Fairchild, Steven B. ;
Ferguson, John B. ;
Maruyama, Benji ;
Kono, Junichiro ;
Talmon, Yeshayahu ;
Cohen, Yachin ;
Otto, Marcin J. ;
Pasquali, Matteo .
SCIENCE, 2013, 339 (6116) :182-186
[6]   Enhancement of the Mechanical Properties of Directly Spun CNT Fibers by Chemical Treatment [J].
Boncel, Slawomir ;
Sundaram, Rajyashree M. ;
Windle, Alan H. ;
Koziol, Krzysztof K. K. .
ACS NANO, 2011, 5 (12) :9339-9344
[7]   Laser-shock compression of diamond and evidence of a negative-slope melting curve [J].
Brygoo, Stephanie ;
Henry, Emeric ;
Loubeyre, Paul ;
Eggert, Jon ;
Koenig, Michel ;
Loupias, Berenice ;
Benuzzi-Mounaix, Alessandra ;
Le Gloahec, Marc Rabec .
NATURE MATERIALS, 2007, 6 (04) :274-277
[8]   Thermal conductivity of carbon nanotubes [J].
Che, JW ;
Çagin, T ;
Goddard, WA .
NANOTECHNOLOGY, 2000, 11 (02) :65-69
[9]   Hierarchical structure of carbon nanotube fibers, and the change of structure during densification by wet stretching [J].
Cho, Hyunjung ;
Lee, Haemin ;
Oh, Eugene ;
Lee, Sung-Hyun ;
Park, Junbeom ;
Park, Hyun Jin ;
Yoon, Suk-Bae ;
Lee, Cheol-Hun ;
Kwak, Gye-Hoon ;
Lee, Won Jae ;
Kim, Juhan ;
Kim, Ji Eun ;
Lee, Kun-Hong .
CARBON, 2018, 136 :409-416
[10]   Fabrication and Applications of Carbon Nanotube Fibers [J].
Choo, Hungo ;
Jung, Yeonsu ;
Jeong, Youngjin ;
Kim, Hwan Chul ;
Ku, Bon-Cheol .
CARBON LETTERS, 2012, 13 (04) :191-204