NONLINEAR FOKKER-PLANCK EQUATIONS WITH TIME-DEPENDENT COEFFICIENTS

被引:5
作者
Barbu, Viorelc [1 ]
Rockner, Michael [2 ]
机构
[1] Romanian Acad, Octav Mayer Inst Math, Iasi, Romania
[2] Univ Bielefeld, Fak Math, D-33501 Bielefeld, Germany
关键词
Fokker-Planck equation; Cauchy problem; stochastic differential equation; Sobolev space;
D O I
10.1137/21M145481X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
An operator-based approach is used here to prove the existence and uniqueness of u(t, x)) + div(b(t, x, u(t, x))u(t, x)) = 0 in (0, oo) \times Rd, u(0, x) = u0(x), x \in Rd in the Sobolev space proved also that if u0 is a density of a probability measure, so is u(t, & BULL;) for all t \geq 0. Moreover, we construct a weak solution to the McKean-Vlasov SDE associated with the Fokker-Planck equation such that u(t) is the density of its time marginal law.
引用
收藏
页码:1 / 18
页数:18
相关论文
共 17 条
[1]  
Ambrosio L, 2008, LECT MATH, P1
[2]  
Barbu V, 2010, SPRINGER MONOGR MATH, P1, DOI 10.1007/978-1-4419-5542-5
[3]  
Barbu V., INDIANA U MATH J
[4]  
Barbu V, 2022, Arxiv, DOI arXiv:2203.00122
[5]   Solutions for nonlinear Fokker-Planck equations with measures as initial data and McKean-Vlasov equations [J].
Barbu, Viorel ;
Roeckner, Michael .
JOURNAL OF FUNCTIONAL ANALYSIS, 2021, 280 (07)
[6]   Uniqueness for nonlinear Fokker-Planck equations and weak uniqueness for McKean-Vlasov SDEs [J].
Barbu, Viorel ;
Roeckner, Michael .
STOCHASTICS AND PARTIAL DIFFERENTIAL EQUATIONS-ANALYSIS AND COMPUTATIONS, 2021, 9 (03) :702-713
[7]   FROM NONLINEAR FOKKER-PLANCK EQUATIONS TO SOLUTIONS OF DISTRIBUTION DEPENDENT SDE [J].
Barbu, Viorel ;
Roeckner, Michael .
ANNALS OF PROBABILITY, 2020, 48 (04) :1902-1920
[8]   PROBABILISTIC REPRESENTATION FOR SOLUTIONS TO NONLINEAR FOKKER-PLANCK EQUATIONS [J].
Barbu, Viorel ;
Roeckner, Michael .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2018, 50 (04) :4246-4260
[9]   Generalized solutions to nonlinear Fokker-Planck equations [J].
Barbu, Viorel .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2016, 261 (04) :2446-2471
[10]  
Bogachev V.I., 2015, Fokker-Planck-Kolmogorov Equations:. Mathematical Surveys and Monographs, DOI [10.1090/surv/207, DOI 10.1090/SURV/207]