A Bioglass-Poly(lactic-co-glycolic Acid) Scaffold@Fibrin Hydrogel Construct to Support Endochondral Bone Formation

被引:7
作者
Jeyachandran, Dhanalakshmi [1 ]
Murshed, Monzur [2 ,3 ]
Haglund, Lisbet [4 ]
Cerruti, Marta [1 ]
机构
[1] McGill Univ, Dept Min & Mat Engn, Montreal, PQ H3A 0C1, Canada
[2] McGill Univ, Fac Dent, Dept Med, Montreal, PQ H4A 0A9, Canada
[3] McGill Univ, Shriners Hosp Children, Montreal, PQ H4A 0A9, Canada
[4] McGill Univ, Expt Surg, Montreal, PQ H3G 2M1, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
bioglasses; bone tissue engineering; endochondral ossification; hypertrophy; material cues; MESENCHYMAL STEM-CELLS; HYPERTROPHIC CHONDROCYTES; COMPOSITE SCAFFOLD; CURRENT STRATEGIES; IN-SITU; CARTILAGE; OSSIFICATION; DIFFERENTIATION; CHONDROGENESIS; REGENERATION;
D O I
10.1002/adhm.202300211
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Bone tissue engineering using stem cells to build bone directly on a scaffold matrix often fails due to lack of oxygen at the injury site. This may be avoided by following the endochondral ossification route; herein, a cartilage template is promoted first, which can survive hypoxic environments, followed by its hypertrophy and ossification. However, hypertrophy is so far only achieved using biological factors. This work introduces a Bioglass-Poly(lactic-co-glycolic acid@fibrin (Bg-PLGA@fibrin) construct where a fibrin hydrogel infiltrates and encapsulates a porous Bg-PLGA. The hypothesis is that mesenchymal stem cells (MSCs) loaded in the fibrin gel and induced into chondrogenesis degrade the gel and become hypertrophic upon reaching the stiffer, bioactive Bg-PLGA core, without external induction factors. Results show that Bg-PLGA@fibrin induces hypertrophy, as well as matrix mineralization and osteogenesis; it also promotes a change in morphology of the MSCs at the gel/scaffold interface, possibly a sign of osteoblast-like differentiation of hypertrophic chondrocytes. Thus, the Bg-PLGA@fibrin construct can sequentially support the different phases of endochondral ossification purely based on material cues. This may facilitate clinical translation by decreasing in-vitro cell culture time pre-implantation and the complexity associated with the use of external induction factors.
引用
收藏
页数:13
相关论文
共 84 条
[21]   Autologous fibrin scaffolds cultured dermal fibroblasts and enriched with encapsulated bFGF for tissue engineering [J].
de la Puente, Pilar ;
Ludena, Dolores ;
Fernandez, Ana ;
Aranda, Jose L. ;
Varela, Gonzalo ;
Iglesias, Javier .
JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART A, 2011, 99A (04) :648-654
[22]   Bone regeneration: current concepts and future directions [J].
Dimitriou, Rozalia ;
Jones, Elena ;
McGonagle, Dennis ;
Giannoudis, Peter V. .
BMC MEDICINE, 2011, 9
[23]   Enantioselective determination of phenthoate enantiomers in plant-origin matrices using reversed-phase high-performance liquid chromatography-tandem mass spectrometry [J].
Dong, Chao ;
Zhou, Jie ;
Zuo, Wei ;
Li, Zhixia ;
Li, Jing ;
Jiao, Bining .
BIOMEDICAL CHROMATOGRAPHY, 2022, 36 (01)
[24]   Microspheres leaching for scaffold porosity control [J].
Draghi, L ;
Resta, S ;
Pirozzolo, MG ;
Tanzi, MC .
JOURNAL OF MATERIALS SCIENCE-MATERIALS IN MEDICINE, 2005, 16 (12) :1093-1097
[25]   Matrix elasticity directs stem cell lineage specification [J].
Engler, Adam J. ;
Sen, Shamik ;
Sweeney, H. Lee ;
Discher, Dennis E. .
CELL, 2006, 126 (04) :677-689
[26]   Long-term stable fibrin gels for cartilage engineering [J].
Eyrich, Damela ;
Brandl, Ferdinand ;
Appel, Bernhard ;
Wiese, Hinrich ;
Maier, Gerhard ;
Wenzel, Magdalene ;
Staudenmaier, Rainer ;
Goepferich, Achim ;
Blunk, Torsten .
BIOMATERIALS, 2007, 28 (01) :55-65
[27]   In-vivo generation of bone via endochondral ossification by in-vitro chondrogenic priming of adult human and rat mesenchymal stem cells [J].
Farrell, Eric ;
Both, Sanne K. ;
Odoerfer, Kathrin I. ;
Koevoet, Wendy ;
Kops, Nicole ;
O'Brien, Fergal J. ;
de Jong, Robert J. Baatenburg ;
Verhaar, Jan A. ;
Cuijpers, Vincent ;
Jansen, John ;
Erben, Reinhold G. ;
van Osch, Gerjo J. V. M. .
BMC MUSCULOSKELETAL DISORDERS, 2011, 12
[28]   Bone defect reconstruction via endochondral ossification: A developmental engineering strategy [J].
Fu, Rao ;
Liu, Chuanqi ;
Yan, Yuxin ;
Li, Qingfeng ;
Huang, Ru-Lin .
JOURNAL OF TISSUE ENGINEERING, 2021, 12
[29]   Viscoelastic dissipation in compact bone: Implications for stress-induced fluid flow in bone [J].
Garner, E ;
Lakes, R ;
Lee, T ;
Swan, C ;
Brand, R .
JOURNAL OF BIOMECHANICAL ENGINEERING-TRANSACTIONS OF THE ASME, 2000, 122 (02) :166-172
[30]   Bioactive glass/polymer composite scaffolds mimicking bone tissue [J].
Gentile, Piergiorgio ;
Mattioli-Belmonte, Monica ;
Chiono, Valeria ;
Ferretti, Concetta ;
Baino, Francesco ;
Tonda-Turo, Chiara ;
Vitale-Brovarone, Chiara ;
Pashkuleva, Iva ;
Reis, Rui L. ;
Ciardelli, Gianluca .
JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART A, 2012, 100A (10) :2654-2667