Data assimilation and control system for adaptive model predictive control

被引:4
作者
Morishita, Y. [1 ]
Murakami, S. [1 ]
Yokoyama, M. [2 ,4 ]
Ueno, G. [3 ,4 ,5 ]
机构
[1] Kyoto Univ, Dept Nucl Engn, Kyoto 6158540, Japan
[2] Natl Inst Nat Sci, Natl Inst Fus Sci, Aomori 0393212, Japan
[3] Res Org Informat & Syst, Inst Stat Math, Tokyo 1908562, Japan
[4] SOKENDAI, Grad Univ Adv Studies, Hayama, Kanagawa 2400115, Japan
[5] Res Org Informat & Syst, Joint Support Ctr Data Sci Res, Tokyo 1900014, Japan
关键词
Data assimilation; Model-based control; Fusion plasma; ASTI; NEOCLASSICAL TRANSPORT; MONTE-CARLO; CHALLENGES; SIMULATION;
D O I
10.1016/j.jocs.2023.102079
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Model-based control of complex systems is a challenging task, particularly when the system model involves many uncertain elements. To achieve model predictive control of complex systems, we require a method that sequentially reduces uncertainties in the system model using observations and estimates control inputs under the model uncertainties. In this work, we propose an extended data assimilation framework, named data assimilation and control system (DACS), to integrate data assimilation and optimal control-input estimation. The DACS framework comprises a prediction step and three filtering steps and provides adaptive model predictive control algorithms. Since the DACS framework does not require additional prediction steps, the framework can even be applied to a large system in which iterative model prediction is prohibitive due to computational burden. Through numerical experiments in controlling virtual (numerically created) fusion plasma, we demonstrate the effectiveness of DACS and reveal the characteristics of the control performance related to the choice of hyper parameters and the discrepancies between the system model and the real system.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Adaptive model predictive control for constrained nonlinear systems
    Adetol, Veronica
    DeHaan, Darryl
    Guay, Martin
    [J]. SYSTEMS & CONTROL LETTERS, 2009, 58 (05) : 320 - 326
  • [2] Particle methods for change detection, system identification, and control
    Andrieu, C
    Doucet, A
    Singh, SS
    Tadic, VB
    [J]. PROCEEDINGS OF THE IEEE, 2004, 92 (03) : 423 - 438
  • [3] Metis: a fast integrated tokamak modelling tool for scenario design
    Artaud, J. F.
    Imbeaux, F.
    Garcia, J.
    Giruzzi, G.
    Aniel, T.
    Basiuk, V
    Becoulet, A.
    Bourdelle, C.
    Buravand, Y.
    Decker, J.
    Dumont, R.
    Eriksson, L. G.
    Garbet, X.
    Guirlet, R.
    Hoang, G. T.
    Huynh, P.
    Joffrin, E.
    Litaudon, X.
    Maget, P.
    Moreau, D.
    Nouailletas, R.
    Pegourie, B.
    Peysson, Y.
    Schneide, M.
    Urban, J.
    [J]. NUCLEAR FUSION, 2018, 58 (10)
  • [4] Data assimilation in the geosciences: An overview of methods, issues, and perspectives
    Carrassi, Alberto
    Bocquet, Marc
    Bertino, Laurent
    Evensen, Geir
    [J]. WILEY INTERDISCIPLINARY REVIEWS-CLIMATE CHANGE, 2018, 9 (05)
  • [5] Chen Z., 2003, STATISTICS, V182, P1, DOI DOI 10.1080/02331880309257
  • [6] Magnetic control of tokamak plasmas through deep reinforcement learning
    Degrave, Jonas
    Felici, Federico
    Buchli, Jonas
    Neunert, Michael
    Tracey, Brendan
    Carpanese, Francesco
    Ewalds, Timo
    Hafner, Roland
    Abdolmaleki, Abbas
    de las Casas, Diego
    Donner, Craig
    Fritz, Leslie
    Galperti, Cristian
    Huber, Andrea
    Keeling, James
    Tsimpoukelli, Maria
    Kay, Jackie
    Merle, Antoine
    Moret, Jean-Marc
    Noury, Seb
    Pesamosca, Federico
    Pfau, David
    Sauter, Olivier
    Sommariva, Cristian
    Coda, Stefano
    Duval, Basil
    Fasoli, Ambrogio
    Kohli, Pushmeet
    Kavukcuoglu, Koray
    Hassabis, Demis
    Riedmiller, Martin
    [J]. NATURE, 2022, 602 (7897) : 414 - +
  • [7] Diagnosis of observation, background and analysis-error statistics in observation space
    Desroziers, G.
    Berre, L.
    Chapnik, B.
    Poli, P.
    [J]. QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2005, 131 (613) : 3385 - 3396
  • [8] Evensen G., 2003, OCEAN DYNAM, V53, P343, DOI [DOI 10.1007/S10236-003-0036-9, 10.1007/s10236-003-0036-9]
  • [9] Fasoli A, 2016, NAT PHYS, V12, P411, DOI [10.1038/nphys3744, 10.1038/NPHYS3744]
  • [10] Real-time-capable prediction of temperature and density profiles in a tokamak using RAPTOR and a first-principle-based transport model
    Felici, F.
    Citrin, J.
    Teplukhina, A. A.
    Redondo, J.
    Bourdelle, C.
    Imbeaux, F.
    Sauter, O.
    Abduallev, S.
    Abhangi, M.
    Abreu, P.
    Afzal, M.
    Aggarwal, K. M.
    Ahlgren, T.
    Ahn, J. H.
    Aho-Mantila, L.
    Aiba, N.
    Airila, M.
    Albanese, R.
    Aldred, V.
    Alegre, D.
    Alessi, E.
    Aleynikov, P.
    Alfier, A.
    Alkseev, A.
    Allinson, M.
    Alper, B.
    Alves, E.
    Ambrosino, G.
    Ambrosino, R.
    Amicucci, L.
    Amosov, V.
    Sunden, E. Andersson
    Angelone, M.
    Anghel, M.
    Angioni, C.
    Appel, L.
    Appelbee, C.
    Arena, P.
    Ariola, M.
    Arnichand, H.
    Arshad, S.
    Ash, A.
    Ashikawa, N.
    Aslanyan, V.
    Asunta, O.
    Auriemma, F.
    Austin, Y.
    Avotina, L.
    Axton, M. D.
    Ayres, C.
    [J]. NUCLEAR FUSION, 2018, 58 (09)