Magnetostriction of Fe-rich FeSiB(P)NbCu amorphous and nanocrystalline soft-magnetic alloys

被引:2
作者
Murugaiyan, Premkumar [1 ,2 ]
Mitra, Amitava [3 ]
Patro, Arun K. [1 ]
Roy, Rajat K. [1 ,2 ]
Panda, Ashis K. [1 ,2 ]
机构
[1] CSIR Natl Met Lab, Funct Mat Grp, Jamshedpur 831007, India
[2] Acad Sci & Innovat Res AcSIR, Ghaziabad 201002, India
[3] Indian Inst Technol, Dept Phys, Jodhpur 342001, India
关键词
Melt-spinning; Fe-amorphous; Nanocrystalline; Soft-magnets; Magnetostriction; Magneto-elastic anisotropy; HIGH B-S; SURFACE CRYSTALLIZATION; CU; ANISOTROPY; RIBBON; GLASS;
D O I
10.1016/j.jallcom.2023.170760
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The compositional effect of magneto-elastic and magnetostriction properties of Fe-rich Fe81B15-xPxSi2Nb1Cu1 (ii) Fe(82)B(14-x)PxSi(2)Nb(1)Cu(1) and (iii) Fe83B13-xPxSi2Nb1Cu1 (x = 0, 4, 8) amorphous and annealed nanocrystalline alloy ribbons were investigated. The present study adds knowledge to the limited magnetostriction literature available for Fe-rich nanocrystalline alloys by systematically varying the Fe and P content. A combination of Becker-Kersten and small angle magnetization rotation (SAMR) techniques has been employed for the magnetostriction (lambda s) evaluation. Both the as-quenched and nanocrystalline ribbons exhibit large positive magnetostriction and show strong compositional dependence to the P content. In the as-quenched condition, 4 at% P addition shows maximum magneto-elastic response and magnetostriction constant, with Fe81B11P4Si2Nb1Cu1 alloy exhibiting a maximum of + 52 ppm and P-free Fe83B13Si2Nb1Cu1 alloy exhibiting a minimum of + 27 ppm. In the nanocrystalline state, a slight reduction of magnetostriction is seen for all alloys, with a maximum of + 32 ppm (4 at% P) and a minimum of + 22 ppm (P-free) in Fe83 at% alloys. The unusual large magnetostriction of optimally annealed samples is attributed to the relatively low crystal volume fraction (30-45%) of nano-crystalline ribbons. The lowest magnetostriction of Fe83B13Si2Nb1Cu1 alloy in both as-quenched and annealed state is explained based on ribbon structural heterogeneity consisting of crystal nuclei and textured alpha-Fe surface crystallization. The study reveals a contradictory response of magneto-crystal anisotropy (grain size reduction) and magneto-elastic anisotropy to the P addition and ribbon structural heterogeneity. The study discusses the implications of the large magneto-elastic anisotropy associated with Fe-rich nanocrystalline ribbons and the way forward for improving their magnetic softness. (C) 2023 Elsevier B.V. All rights reserved.
引用
收藏
页数:14
相关论文
共 50 条
[41]   CRYSTALLIZATION PROCESS OF AMORPHOUS FE-TA-C ALLOY-FILMS AND THERMAL-STABILITY OF THE RESULTANT SOFT-MAGNETIC NANOCRYSTALLINE STATE [J].
HASEGAWA, N ;
MAKINO, A ;
KATAOKA, N ;
FUJIMORI, H ;
TSAI, AP ;
INOUE, A ;
MASUMOTO, T .
MATERIALS TRANSACTIONS JIM, 1995, 36 (07) :952-961
[42]   Prediction of density in amorphous and nanocrystalline soft magnetic alloys: A data mining approach [J].
Parsons, R. ;
Ono, K. ;
Li, Z. ;
Kishimoto, H. ;
Shoji, T. ;
Kato, A. ;
Hill, M. R. ;
Suzuki, K. .
JOURNAL OF ALLOYS AND COMPOUNDS, 2021, 859
[43]   Soft magnetostrictive materials: Enhanced magnetostriction of Fe-based nanocrystalline alloys via Ga doping [J].
Sano, Kohya ;
Yamazaki, Takahiro ;
Morisaki, Ryo ;
Oka, Chiemi ;
Sakurai, Junpei ;
Hata, Seiichi .
SCRIPTA MATERIALIA, 2024, 242
[44]   Magnetic anisotropy and magnetostriction in nanocrystalline Fe-Al alloys obtained by melt spinning technique [J].
Garcia, J. A. ;
Carrizo, J. ;
Elbaile, L. ;
Lago-Cachon, D. ;
Rivas, M. ;
Castrillo, D. ;
Pierna, A. R. .
JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2014, 372 :27-32
[45]   Effect of P substitution for Nb on structure and soft magnetic properties of Si-rich FeCuNbSiB nanocrystalline alloys [J].
Jia, Yu-rong ;
Wang, Zhi ;
Wang, Fang ;
Han, Ye ;
Xie, Zhong-yan ;
Li, Li-juan ;
Zhang, Li .
MATERIALS SCIENCE AND ENGINEERING B-ADVANCED FUNCTIONAL SOLID-STATE MATERIALS, 2017, 222 :55-59
[46]   Soft magnetic properties of Fe-based amorphous/nanocrystalline hybrid materials [J].
Lee, Yeonjoo ;
Jeon, Jonggyu ;
Nam, Seungjin ;
Jang, Teasuk ;
Kim, Hwijun ;
Lee, Minwoo ;
Kim, Yongjin ;
Yang, Dongyeol ;
Min, Kyeongsik ;
Choi, Hyunjoo .
POWDER TECHNOLOGY, 2018, 339 :440-445
[47]   Tailoring of magnetic anisotropy in amorphous and nanocrystalline soft magnetic alloys using swift heavy ions [J].
Dubey, Ranu ;
Gupta, Ajay ;
Sharma, Pooja ;
Darowski, Nora ;
Schumacher, G. .
JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2007, 310 (02) :2491-2493
[48]   SOFT MAGNETIC-PROPERTIES AND MAGNETOSTRICTION OF SPUTTER-DEPOSITED BULK AMORPHOUS-ALLOYS [J].
FUJIMORI, H ;
KAZAMA, NS .
JOURNAL OF APPLIED PHYSICS, 1979, 50 (11) :7645-7645
[49]   Influence of the Circular Magnetic Field and the External Stress on the Remagnetization Process in Fe-Rich Amorphous Wires [J].
Gawronski, Przemyslaw ;
Chizhik, Alexander ;
Mari Blanco, Juan ;
Estevez Gonzalez, Julian .
IEEE TRANSACTIONS ON MAGNETICS, 2010, 46 (02) :365-368
[50]   Electromagnetic assisted thermal processing of amorphous and nanocrystalline soft magnetic alloys: Fundamentals and advances [J].
Talaat, Ahmed ;
Greve, David W. ;
Suraj, M. V. ;
Ohodnicki, Paul R., Jr. .
JOURNAL OF ALLOYS AND COMPOUNDS, 2021, 854