Cartography of Genomic Interactions Enables Deep Analysis of Single-Cell Expression Data

被引:12
作者
Islam, Md Tauhidul [1 ]
Xing, Lei [1 ]
机构
[1] Stanford Univ, Dept Radiat Oncol, Stanford, CA 94305 USA
关键词
GENE-EXPRESSION; ATLAS; CLASSIFICATION; RECONSTRUCTION; VALIDATION; EPISTASIS; NETWORK; IMAGES;
D O I
10.1038/s41467-023-36383-6
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Existing genomic data analysis methods tend to not take full advantage of underlying biological characteristics. Here, the authors leverage the inherent interactions of scRNA-seq data and develop a cartography strategy to contrive the data into a spatially configured genomap for accurate deep pattern discovery. Remarkable advances in single cell genomics have presented unique challenges and opportunities for interrogating a wealth of biomedical inquiries. High dimensional genomic data are inherently complex because of intertwined relationships among the genes. Existing methods, including emerging deep learning-based approaches, do not consider the underlying biological characteristics during data processing, which greatly compromises the performance of data analysis and hinders the maximal utilization of state-of-the-art genomic techniques. In this work, we develop an entropy-based cartography strategy to contrive the high dimensional gene expression data into a configured image format, referred to as genomap, with explicit integration of the genomic interactions. This unique cartography casts the gene-gene interactions into the spatial configuration of genomaps and enables us to extract the deep genomic interaction features and discover underlying discriminative patterns of the data. We show that, for a wide variety of applications (cell clustering and recognition, gene signature extraction, single cell data integration, cellular trajectory analysis, dimensionality reduction, and visualization), the proposed approach drastically improves the accuracies of data analyses as compared to the state-of-the-art techniques.
引用
收藏
页数:17
相关论文
共 93 条
[81]  
van der Maaten L, 2008, J MACH LEARN RES, V9, P2579
[82]   Single-cell reconstruction of the early maternal-fetal interface in humans [J].
Vento-Tormo, Roser ;
Efremova, Mirjana ;
Botting, Rachel A. ;
Turco, Margherita Y. ;
Vento-Termo, Miquel ;
Meyer, Kerstin B. ;
Park, Jong-Eun ;
Stephenson, Emily ;
Polanski, Krzysztof ;
Goncalves, Angela ;
Gardner, Lucy ;
Holmqvist, Staffan ;
Henriksson, Johan ;
Zou, Angela ;
Sharkey, Andrew M. ;
Millar, Ben ;
Innes, Barbara ;
Wood, Laura ;
Wilbrey-Clark, Anna ;
Payne, Rebecca P. ;
Ivarsson, Martin A. ;
Lisgo, Steve ;
Filby, Andrew ;
Rowitch, David H. ;
Bulmer, Judith N. ;
Wright, Gavin J. ;
Stubbington, Michael J. T. ;
Haniffa, Muzlifah ;
Moffett, Ashley ;
Teichmann, Sarah A. .
NATURE, 2018, 563 (7731) :347-+
[83]  
Vinh NX, 2010, J MACH LEARN RES, V11, P2837
[84]   Single-Cell Transcriptomics of the Human Endocrine Pancreas [J].
Wang, Yue J. ;
Schug, Jonathan ;
Won, Kyoung-Jae ;
Liu, Chengyang ;
Naji, Ali ;
Avrahami, Dana ;
Golson, Maria L. ;
Kaestner, Klaus H. .
DIABETES, 2016, 65 (10) :3028-3038
[85]  
Warmuth M.K., 2006, PROC ICML 06, P1001, DOI [10.1145/1143844.1143970, DOI 10.1145/1143844.1143970]
[86]   Bayesian deep learning for single-cell analysis [J].
Way, Gregory P. ;
Greene, Casey S. .
NATURE METHODS, 2018, 15 (12) :1009-1010
[87]  
Wilk AJ, 2020, NAT MED, V26, P1070, DOI [10.1038/s41591-020-0944-y, 10.1101/2020.04.17.20069930]
[88]   Mutual Information for Testing Gene-Environment Interaction [J].
Wu, Xuesen ;
Jin, Li ;
Xiong, Momiao .
PLOS ONE, 2009, 4 (02)
[89]   RNA Sequencing of Single Human Islet Cells Reveals Type 2 Diabetes Genes [J].
Xin, Yurong ;
Kim, Jinrang ;
Okamoto, Haruka ;
Ni, Min ;
Wei, Yi ;
Adler, Christina ;
Murphy, Andrew J. ;
Yancopoulos, George D. ;
Lin, Calvin ;
Gromada, Jesper .
CELL METABOLISM, 2016, 24 (04) :608-615
[90]  
Xing Lei., 2020, Artificial Intelligence in Medicine: Technical Basis and Clinical Applications