Anti-HIV Potential of Beesioside I Derivatives as Maturation Inhibitors: Synthesis, 3D-QSAR, Molecular Docking and Molecular Dynamics Simulations

被引:4
作者
Zhao, Zixuan [1 ]
Ma, Yinghong [1 ]
Li, Xiangyuan [1 ]
Morris-Natschke, Susan L. [2 ]
Sun, Zhaocui [1 ]
Sun, Zhonghao [1 ]
Ma, Guoxu [1 ]
Dong, Zhengqi [1 ]
Zhao, Xiaohong [1 ]
Yang, Meihua [1 ]
Xu, Xudong [1 ]
Lee, Kuohsiung [2 ]
Wu, Haifeng [1 ,2 ]
Chen, Chinho [3 ]
机构
[1] Chinese Acad Med Sci & Peking Union Med Coll, Inst Med Plant Dev, Beijing Key Lab New Drug Discovery Based Class Chi, Key Lab Bioact Subst & Resources Utilizat Chinese, Beijing 100193, Peoples R China
[2] Univ N Carolina, UNC Eshelman Sch Pharm, Nat Prod Res Labs, Chapel Hill, NC 27599 USA
[3] Duke Univ, Antiviral Drug Discovery Lab, Surg Oncol Res Facil, Med Ctr, Durham, NC 27710 USA
关键词
anti-HIV; maturation inhibitor; beesioside I; CA-SP1; 3D-QSAR; molecular docking; molecular dynamics simulations; DISCOVERY;
D O I
10.3390/ijms24021430
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
HIV-1 maturation is the final step in the retroviral lifecycle that is regulated by the proteolytic cleavage of the Gag precursor protein. As a first-in-class HIV-1 maturation inhibitor (MI), bevirimat blocks virion maturation by disrupting capsid-spacer peptide 1 (CA-SP1) cleavage, which acts as the target of MIs. Previous alterations of beesioside I (1) produced (20S,24S)-15 beta,16 beta-diacetoxy-18,24; 20,24-diepoxy-9,19-cyclolanostane-3 beta,25-diol 3-O-3',3'-dimethylsuccinate (3, DSC), showing similar anti-HIV potency compared to bevirimat. To ascertain the binding modes of this derivative, further modification of compound 1 was conducted. Three-dimensional quantitative structure-activity relationship (3D-QSAR) analysis combined with docking simulations and molecular dynamics (MD) were conducted. Five new derivatives were synthesized, among which compound 3b showed significant activity against HIV-1(NL4-3) with an EC50 value of 0.28 mu M. The developed 3D-QSAR model resulted in great predictive ability with training set (r(2) = 0.99, q(2) = 0.55). Molecular docking studies were complementary to the 3D-QSAR analysis, showing that DSC was differently bound to CA-SP1 with higher affinity than that of bevirimat. MD studies revealed that the complex of the ligand and the protein was stable, with root mean square deviation (RMSD) values <2.5 angstrom. The above results provided valuable insights into the potential of DSC as a prototype to develop new antiviral agents.
引用
收藏
页数:16
相关论文
共 50 条
  • [41] 3D-QSAR and molecular docking studies of azaindole derivatives as Aurora B kinase inhibitors
    Ping Lan
    Wan-Na Chen
    Ping-Hua Sun
    Wei-Min Chen
    Journal of Molecular Modeling, 2011, 17 : 1191 - 1205
  • [42] Combined 3D-QSAR and Molecular Docking Analysis of Thienopyrimidine Derivatives as Staphylococcus aureus Inhibitors
    Ouassaf, Mebarka
    Belaidi, Salah
    Khamouli, Saida
    Belaidi, Houmam
    Chtita, Samir
    ACTA CHIMICA SLOVENICA, 2021, 68 (02) : 289 - 303
  • [43] Molecular Docking, 3D-QSAR and Molecular Dynamics Simulation Studies of Substituted Pyrimidines as Selective Covalent Janus Kinase 3 Inhibitors
    蔡晓力
    马玉卓
    赵钟祥
    张玲
    刘鹰翔
    结构化学, 2018, 37 (06) : 839 - 853
  • [44] Combined 3D-QSAR, molecular docking, and molecular dynamics study of tacrine derivatives as potential acetylcholinesterase (AChE) inhibitors of Alzheimer's disease
    Zhou, An
    Hu, Jianping
    Wang, Lirong
    Zhong, Guochen
    Pan, Jian
    Wu, Zeyu
    Hui, Ailing
    JOURNAL OF MOLECULAR MODELING, 2015, 21 (10)
  • [45] Combined 3D-QSAR, molecular docking, and molecular dynamics study of tacrine derivatives as potential acetylcholinesterase (AChE) inhibitors of Alzheimer’s disease
    An Zhou
    Jianping Hu
    Lirong Wang
    Guochen Zhong
    Jian Pan
    Zeyu Wu
    Ailing Hui
    Journal of Molecular Modeling, 2015, 21
  • [46] In silico exploration of aryl sulfonamide analogs as voltage-gated sodium channel 1.7 inhibitors by using 3D-QSAR, molecular docking study, and molecular dynamics simulations
    Wang, Mingxing
    Wang, Ying
    Kong, Dejiang
    Jiang, Hailun
    Wang, Jian
    Cheng, Maosheng
    COMPUTATIONAL BIOLOGY AND CHEMISTRY, 2018, 77 : 214 - 225
  • [47] Probing the binding mechanism of substituted pyridine derivatives as effective and selective lysine-specific demethylase 1 inhibitors using 3D-QSAR, molecular docking and molecular dynamics simulations
    Wang, Zhi-Zheng
    Yang, Jing
    Sun, Xu-Dong
    Ma, Chao-Ya
    Gao, Qi-Bing
    Ding, Lina
    Liu, Hong-Min
    JOURNAL OF BIOMOLECULAR STRUCTURE & DYNAMICS, 2019, 37 (13) : 3482 - 3495
  • [48] Insight into the interaction mechanism of human SGLT2 with its inhibitors: 3D-QSAR studies, homology modeling, and molecular docking and molecular dynamics simulations
    Lili Dong
    Ruirui Feng
    Jiawei Bi
    Shengqiang Shen
    Huizhe Lu
    Jianjun Zhang
    Journal of Molecular Modeling, 2018, 24
  • [49] In silico studies on potential TNKS inhibitors: a combination of pharmacophore and 3D-QSAR modelling, virtual screening, molecular docking and molecular dynamics
    Liu, Jianxin
    Feng, Kairui
    Ren, Yujie
    JOURNAL OF BIOMOLECULAR STRUCTURE & DYNAMICS, 2019, 37 (14) : 3803 - 3821
  • [50] In silico studies of a novel scaffold of benzoxazole derivatives as anticancer agents by 3D-QSAR, molecular docking and molecular dynamics simulations
    Jiang, Yuhan
    Yang, Wei
    Wang, Fangfang
    Zhou, Bo
    RSC ADVANCES, 2023, 13 (22) : 14808 - 14824