Quantifying the impact of unmeasured confounding in observational studies with the E value

被引:17
|
作者
Gaster, Tobias [1 ]
Eggertsen, Christine Marie [1 ]
Stovring, Henrik [2 ,3 ]
Ehrenstein, Vera [4 ,5 ]
Petersen, Irene [4 ,5 ,6 ]
机构
[1] Aarhus Univ, Aarhus, Denmark
[2] Steno Diabet Ctr Aarhus, Aarhus, Denmark
[3] Univ Southern Denmark, Clin Pharmacol Pharm & Environm Med, Odense, Denmark
[4] Aarhus Univ, Dept Clin Epidemiol, DK-8000 Aarhus, Denmark
[5] Aarhus Univ Hosp, Aarhus, Denmark
[6] UCL, Dept Primary Care & Populat Hlth, London, England
来源
BMJ MEDICINE | 2023年 / 2卷 / 01期
关键词
Pregnancy complications; Epidemiology; Obstetrics; SEROTONIN REUPTAKE INHIBITORS; SENSITIVITY-ANALYSIS; MISCARRIAGE; PREGNANCY; RISK;
D O I
10.1136/bmjmed-2022-000366
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
The E value method deals with unmeasured confounding, a key source of bias in observational studies. The E value method is described and its use is shown in a worked example of a meta-analysis examining the association between the use of antidepressants in pregnancy and the risk of miscarriage.
引用
收藏
页数:5
相关论文
共 50 条
  • [21] An approach to quantifying the potential importance of residual confounding in systematic reviews of observational studies: A GRADE concept paper
    Verbeek, Jos H.
    Whaley, Paul
    Morgan, Rebecca L.
    Taylor, Kyla W.
    Rooney, Andrew A.
    Schwingshackl, Lukas
    Hoving, Jan L.
    Katikireddi, S. Vittal
    Shea, Beverley
    Mustafa, Reem A.
    Murad, M. Hassan
    Schunemann, Holger J.
    ENVIRONMENT INTERNATIONAL, 2021, 157
  • [22] Evaluating the Impact of Unmeasured Confounding with Internal Validation Data: An Example Cost Evaluation in Type 2 Diabetes
    Faries, Douglas
    Peng, Xiaomei
    Pawaskar, Manjiri
    Price, Karen
    Stamey, James D.
    Seaman, John W., Jr.
    VALUE IN HEALTH, 2013, 16 (02) : 259 - 266
  • [23] Inclusion of binary proxy variables in logistic regression improves treatment effect estimation in observational studies in the presence of binary unmeasured confounding variables
    Rosenbaum, Cornelius
    Yu, Qingzhao
    Buzhardt, Sarah
    Sutton, Elizabeth
    Chapple, Andrew G.
    PHARMACEUTICAL STATISTICS, 2023, 22 (06) : 995 - 1015
  • [24] Bayesian modeling of cost-effectiveness studies with unmeasured confounding: a simulation study
    Stamey, James D.
    Beavers, Daniel P.
    Faries, Douglas
    Price, Karen L.
    Seaman, John W., Jr.
    PHARMACEUTICAL STATISTICS, 2014, 13 (01) : 94 - 100
  • [25] Trouble in Paradise: Unmeasured Confounding in Registry-based Studies of Etiologic Factors
    Rider, Jennifer R.
    EUROPEAN UROLOGY, 2016, 69 (05) : 883 - 884
  • [26] Confounding factors in observational hip fracture studies
    Xue, F. S.
    Wang, S. Y.
    Cui, X. L.
    ANAESTHESIA, 2014, 69 (06) : 642 - 642
  • [27] Observational studies: a review of study designs, challenges and strategies to reduce confounding
    Lu, C. Y.
    INTERNATIONAL JOURNAL OF CLINICAL PRACTICE, 2009, 63 (05) : 691 - 697
  • [28] Use of E-values for addressing confounding in observational studies-an empirical assessment of the literature
    Blum, Manuel R.
    Tan, Yuan Jin
    Ioannidis, John P. A.
    INTERNATIONAL JOURNAL OF EPIDEMIOLOGY, 2020, 49 (05) : 1482 - 1494
  • [29] Evaluation of Frailty as an Unmeasured Confounder in Observational Studies of Antidiabetic Medications
    Presley, Caroline A.
    Chipman, Jonathan
    Min, Jea Young
    Grijalva, Carlos G.
    Greevy, Robert A.
    Griffin, Marie R.
    Roumie, Christianne L.
    JOURNALS OF GERONTOLOGY SERIES A-BIOLOGICAL SCIENCES AND MEDICAL SCIENCES, 2019, 74 (08): : 1282 - 1288
  • [30] Assessing the sensitivity of regression results to unmeasured confounders in observational studies
    Lin, DY
    Psaty, BM
    Kronmal, RA
    BIOMETRICS, 1998, 54 (03) : 948 - 963