Purcell effect in two-dimensional photonic crystal slabs with triangular lattice

被引:1
作者
Dyakov, Sergey A. [1 ]
Fradkin, Ilia M. [1 ,2 ]
Yurasov, Dmitry, V [3 ]
Zinovyev, Vladimir A. [4 ]
Tikhodeev, Sergei G. [5 ,6 ]
Gippius, Nikolay A. [1 ]
机构
[1] Skolkovo Inst Sci & Technol, Bolshoy Blvd 30, Str 1, Moscow 143025, Russia
[2] Moscow Inst Phys & Technol, Inst Skiy Pereulok 9, Moscow 141701, Moscow Region, Russia
[3] RAS, Inst Phys Microstruct, GSP 105, Nizhnii Novgorod 603950, Russia
[4] Rzhanov Inst Semicond Phys SB RAS, Novosibirsk 630090, Russia
[5] Lomonosov Moscow State Univ, Leninskie Gory GSP 1, Moscow 119991, Russia
[6] AM Prokhorov Gen Phys Inst, Vavilova St 38, Moscow 117942, Russia
基金
俄罗斯科学基金会;
关键词
EMISSION; LUMINESCENCE; ENHANCEMENT; NANOCRYSTALS; FLUORESCENCE; FORMULATION; DIPOLE;
D O I
10.1103/PhysRevB.108.155416
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We present the results of theoretical studies of the Purcell effect in infinite photonic crystal slabs without defects or cavities. First, we describe a theoretical model for calculating total and external Purcell factors in two-dimensional photonic crystal slabs in terms of dipole's emissivity to the near field and the far field. Then we apply this theory to silicon photonic crystal slabs with triangular lattice on silica substrate and study how the Purcell factor depends on the wavelength and the dipole's position. We show that by placing the dipoles in the hot spots of modes with the zero group velocity, one can greatly enhance the Purcell factor in comparison to a homogeneous silicon slab. We demonstrate that this effect is associated with Van Hove singularities. We also calculate partial contributions to the total Purcell factor from different energy dissipation channels.
引用
收藏
页数:12
相关论文
共 64 条
[1]  
Akselrod GM, 2014, NAT PHOTONICS, V8, P835, DOI [10.1038/nphoton.2014.228, 10.1038/NPHOTON.2014.228]
[2]  
aps, About us, DOI [10.1103/PhysRevB.108.155416, DOI 10.1103/PHYSREVB.108.155416]
[3]  
Barnes WL, 1998, J MOD OPTIC, V45, P661, DOI 10.1080/09500349808230614
[4]   Tuning and switching effects of quasi-BIC states combining phase change materials with all-dielectric metasurfaces [J].
Barreda, Angela ;
Zou, Chengjun ;
Sinelnik, Artem ;
Menshikov, Evgenii ;
Sinev, Ivan ;
Pertsch, Thomas ;
Staude, Isabelle .
OPTICAL MATERIALS EXPRESS, 2022, 12 (08) :3132-3142
[5]   Hybrid Photonic-Plasmonic Cavity Design for Very Large Purcell Factors at Telecommunication Wavelengths [J].
Barreda, Angela ;
Mercade, Laura ;
Zapata-Herrera, Mario ;
Aizpurua, Javier ;
Martinez, Alejandro .
PHYSICAL REVIEW APPLIED, 2022, 18 (04)
[6]   Comparison of methods for calculating the field excited by a dipole near a 2-D periodic material [J].
Capolino, Filippo ;
Jackson, David R. ;
Wilton, Donald R. ;
Felsen, Leopold B. .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2007, 55 (06) :1644-1655
[7]   General point dipole theory for periodic metasurfaces: magnetoelectric scattering lattices coupled to planar photonic structures [J].
Chen, Yuntian ;
Zhang, Yan ;
Koenderink, A. Femius .
OPTICS EXPRESS, 2017, 25 (18) :21358-21378
[8]   Vertical Routing of Spinning-Dipole Radiation from a Chiral Metasurface [J].
Dyakov, S. A. ;
Gippius, N. A. ;
Fradkin, I. M. ;
Tikhodeev, S. G. .
PHYSICAL REVIEW APPLIED, 2020, 14 (02)
[9]   Photonic Bound States in the Continuum in Si Structures with the Self-Assembled Ge Nanoislands [J].
Dyakov, Sergey A. ;
Stepikhova, Margarita, V ;
Bogdanov, Andrey A. ;
Novikov, Alexey, V ;
Yurasov, Dmitry, V ;
Shaleev, Mikhail, V ;
Krasilnik, Zakhary F. ;
Tikhodeev, Sergei G. ;
Gippius, Nikolay A. .
LASER & PHOTONICS REVIEWS, 2021, 15 (07)
[10]   ELECTROMAGNETIC-INTERACTIONS OF MOLECULES WITH METAL-SURFACES [J].
FORD, GW ;
WEBER, WH .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1984, 113 (04) :195-287