A QGIS -plugin for gully erosion modeling

被引:1
|
作者
Khan, Saad [1 ]
Omran, Adel [2 ,3 ]
Schroeder, Dietrich [1 ]
Sommer, Christian [4 ,5 ]
Hochschild, Volker [4 ]
Maerker, Michael [2 ,6 ]
机构
[1] Univ Appl Sci Stuttgart, Dept Geomat Comp Sci & Math, Stuttgart, Germany
[2] Univ Pavia, Dept Earth & Environm Sci, Via Ferrata 1, I-27100 Pavia, Italy
[3] Suez Univ, Fac Petr & Min Engn, Dept Geol & Geophys Engn, Suez, Egypt
[4] Tubingen Univ, Inst Geog, Dept Geosci, Rumelinstr 19-23, D-72070 Tubingen, Germany
[5] Heidelberg Acad Sci & Humanities, ROCEEH The Role Culture Early Expans Humans, Holderlinstr 12, D-72074 Tubingen, Germany
[6] Leibniz Ctr Agr Landscape Res, Working Grp Soil Eros & Feedbacks, Muncheberg, Germany
关键词
Gully erosion; Temporal modeling; QGIS; OpenSource; !text type='Python']Python[!/text; SOIL; SWAZILAND; SCALES;
D O I
10.1007/s12145-023-01092-7
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Gully erosion affects the landscape and human life in many ways, including the destruction of agricultural land and infrastructures, altering the hydraulic potential of soils, as well as water availability. Due to climate change, more areas are expected to be affected by gully erosion in the future, threatening especially low-income agricultural regions. In the past decades, quantitative methods have been proposed to simulate and predict gully erosion at different scales. However, gully erosion is still underrepresented in modern GIS-based modeling and simulation approaches. Therefore, this study aims to develop a QGIS plugin using Python to assess gully erosion dynamics. We explain the preparation of the input data, the modeling procedure based on Sidorchuk's (Sidorchuk A (1999) Dynamic and static models of gully erosion. CATENA 37:401-414.) gully simulation model, and perform a detailed sensitivity analysis of model parameters. The plugin uses topographical data, soil characteristics and discharge information as gully model input. The plugin was tested on a gully network in KwaThunzi, KwaZulu-Natal, South Africa. The results and sensitivity analyses confirm Sidorchuck's earlier observations that the critical runoff velocity is a main controlling parameter in gully erosion evolution, alongside with the slope stability threshold and the soil erodibility coefficient. The implemented QGIS plugin simplifies the gully model setup, the input parameter preparation as well as the post-processing and visualization of modelling results. The results are provided in different data formats to be visualized with different 3D visualization software tools. This enables a comprehensive gully assessment and the derivation of respective coping and mitigation strategies.
引用
收藏
页码:3269 / 3282
页数:14
相关论文
共 50 条
  • [1] A QGIS -plugin for gully erosion modeling
    Saad Khan
    Adel Omran
    Dietrich Schröder
    Christian Sommer
    Volker Hochschild
    Michael Märker
    Earth Science Informatics, 2023, 16 : 3269 - 3282
  • [2] THYRSIS: A QGIS plugin for hydrogeological modelling
    Renard, F.
    Mora, V.
    Horgue, P.
    Kerloch, J. M.
    COMPUTERS & GEOSCIENCES, 2024, 187
  • [3] EPANET in QGIS framework: the QEPANET plugin
    Menapace, Andrea
    Pisaturo, Giuseppe Roberto
    De Luca, Alberto
    Gerola, Daniel
    Righetti, Maurizio
    JOURNAL OF WATER SUPPLY RESEARCH AND TECHNOLOGY-AQUA, 2020, 69 (01): : 1 - 5
  • [4] Preliminary Modeling of Rockfall Runout: Definition of the Input Parameters for the QGIS Plugin QPROTO
    Castelli, Marta
    Torsello, Giulia
    Vallero, Gianmarco
    GEOSCIENCES, 2021, 11 (02) : 1 - 26
  • [5] Geohazard Plugin: A QGIS Plugin for the Preliminary Analysis of Landslides at Medium-Small Scale
    Castelli, Marta
    Filipello, Andrea
    Fasciano, Claudio
    Torsello, Giulia
    Campus, Stefano
    Pispico, Rocco
    LAND, 2025, 14 (02)
  • [6] Literature Mapper: A QGIS Plugin for Georeferencing Citations in Zotero
    Tobias, Michele M.
    Mandel, Alex, I
    AIR SOIL AND WATER RESEARCH, 2021, 14
  • [7] SCREENING OF ENVIRONMENTAL IMPACT OF POLLUTION WITH THE QGIS PLUGIN ENVIFATE
    Geri, F.
    Cainelli, O.
    Salogni, G.
    Zatelli, P.
    Ciolli, M.
    FOSS4G-EUROPE 2017 - ACADEMIC TRACK, 2017, 42-4 (W2): : 79 - 83
  • [8] Deepness: Deep neural remote sensing plugin for QGIS
    Aszkowski, Przemyslaw
    Ptak, Bartosz
    Kraft, Marek
    Pieczynski, Dominik
    Drapikowski, Pawel
    SOFTWAREX, 2023, 23
  • [9] Mapping Susceptibility With Open-Source Tools: A New Plugin for QGIS
    Titti, Giacomo
    Sarretta, Alessandro
    Lombardo, Luigi
    Crema, Stefano
    Pasuto, Alessandro
    Borgatti, Lisa
    FRONTIERS IN EARTH SCIENCE, 2022, 10
  • [10] PyGeoRS: a QGIS plugin for automating landsat data processing in environmental mapping
    Marzouki, Anass
    Dridri, Abdallah
    EARTH SCIENCE INFORMATICS, 2025, 18 (01)