Ultralarge layer spacing and superior structural stability of V2O5 as high-performance cathode for aqueous zinc-ion battery

被引:26
作者
Liu, Anni [1 ,2 ]
Wu, Feng [1 ,2 ,3 ]
Zhang, Yixin [1 ,2 ]
Jiang, Ying [1 ,2 ]
Xie, Chen [1 ,2 ]
Yang, Keqing [1 ,2 ]
Zhou, Jiahui [1 ,2 ]
Xie, Man [1 ,2 ]
机构
[1] Beijing Inst Technol, Sch Mat Sci & Engn, Beijing Key Lab Environm Sci & Engn, Beijing 100081, Peoples R China
[2] Chongqing Innovat Ctr, Beijing Inst Technol, Chongqing 401120, Peoples R China
[3] Collaborat Innovat Ctr Elect Vehicles Beijing, Beijing 100081, Peoples R China
基金
中国博士后科学基金;
关键词
in situ intercalation; heterostructure; organic; inorganic cathode; aqueous zinc-ion battery; TOTAL-ENERGY CALCULATIONS; MXENE; NANOSHEETS;
D O I
10.1007/s12274-023-5676-0
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Aqueous zinc (Zn)-ion batteries (AZIBs) present safe and environmentally friendly features thereby emerging as an attractive energy storage device. The V2O5-based cathodes are promising because of their high theoretical capacity and energy density. However, insufficient interlayer distance, easy dissolution and structural collapse due to irreversible crystalline phase transition limit the development of V2O5 cathodes in AZIBs. Herein, doubly modified V2O5-based cathode which was in-situ intercalated by polyaniline (PANI) and composited with MXene (Ti3C2Tx) (denoted PVM) were synthesized by one-step method for the first time. The in situ intercalation of PANI provides a channel for the rapid diffusion of Zn2+ and the heterogeneous structures effectively promote charge transfer and enable structural integrity of cathode during cycling. Meanwhile, the conductivity of PVM electrode is greatly improved. Specifically, the PVM electrode shows a superior rate performance of 82 mAh center dot g(-1) after 2000 cycles at 10 A center dot g-1. And it shows high pseudocapacitance behavior (80.23% capacitor contribution ratio at 0.1 mV center dot s(-1)). A novel method of intercalation composite modification for the cathode is proposed, which provides fundamental guidance for the development of high-performance cathodes for AZIBs.
引用
收藏
页码:9461 / 9470
页数:10
相关论文
共 67 条
[1]   A rechargeable aqueous manganese-ion battery based on intercalation chemistry [J].
Bi, Songshan ;
Wang, Shuai ;
Yue, Fang ;
Tie, Zhiwei ;
Niu, Zhiqiang .
NATURE COMMUNICATIONS, 2021, 12 (01)
[2]   IMPROVED TETRAHEDRON METHOD FOR BRILLOUIN-ZONE INTEGRATIONS [J].
BLOCHL, PE ;
JEPSEN, O ;
ANDERSEN, OK .
PHYSICAL REVIEW B, 1994, 49 (23) :16223-16233
[3]   Ti3C2Tx/PANI composites with tunable conductivity towards anticorrosion application [J].
Cai, Meng ;
Yan, Han ;
Li, Yuting ;
Li, Wen ;
Li, Hao ;
Fan, Xiaoqiang ;
Zhu, Minhao .
CHEMICAL ENGINEERING JOURNAL, 2021, 410
[4]   MOF-Derived ZnS Nanodots/Ti3C2Tx MXene Hybrids Boosting Superior Lithium Storage Performance [J].
Cao, Bin ;
Liu, Huan ;
Zhang, Xin ;
Zhang, Peng ;
Zhu, Qizhen ;
Du, Huiling ;
Wang, Lianli ;
Zhang, Rupeng ;
Xu, Bin .
NANO-MICRO LETTERS, 2021, 13 (01)
[5]   Flexible MXene Framework as a Fast Electron/Potassium-Ion Dual-Function Conductor Boosting Stable Potassium Storage in Graphite Electrodes [J].
Cao, Bin ;
Liu, Huan ;
Zhang, Peng ;
Sun, Ning ;
Zheng, Bin ;
Li, Ying ;
Du, Huiling ;
Xu, Bin .
ADVANCED FUNCTIONAL MATERIALS, 2021, 31 (32)
[6]   Bimetallic Sulfide Sb2S3@FeS2 Hollow Nanorods as High-Performance Anode Materials for Sodium-Ion Batteries [J].
Cao, Liang ;
Gao, Xuanwen ;
Zhang, Bao ;
Ou, Xing ;
Zhang, Jiafeng ;
Luo, Wen-Bin .
ACS NANO, 2020, 14 (03) :3610-3620
[7]   Regulation of Lamellar Structure of Vanadium Oxide via Polyaniline Intercalation for High-Performance Aqueous Zinc-Ion Battery [J].
Chen, Song ;
Li, Kang ;
Hui, Kwan San ;
Zhang, Jintao .
ADVANCED FUNCTIONAL MATERIALS, 2020, 30 (43)
[8]   A novel wet process for the preparation of vanadium dioxide thin film [J].
Deki, S ;
Aoi, Y ;
Kajinami, A .
JOURNAL OF MATERIALS SCIENCE, 1997, 32 (16) :4269-4273
[9]   Recent Advances in Aqueous Zinc-Ion Batteries [J].
Fang, Guozhao ;
Zhou, Jiang ;
Pan, Anqiang ;
Liang, Shuquan .
ACS ENERGY LETTERS, 2018, 3 (10) :2480-2501
[10]   Electronic Structure Regulation of Layered Vanadium Oxide via Interlayer Doping Strategy toward Superior High-Rate and Low-Temperature Zinc-Ion Batteries [J].
Geng, Hongbo ;
Cheng, Min ;
Wang, Bo ;
Yang, Yang ;
Zhang, Yufei ;
Li, Cheng Chao .
ADVANCED FUNCTIONAL MATERIALS, 2020, 30 (06)