Kernel regression for cause-specific hazard models with nonparametric covariate functions

被引:0
作者
Qi, Xiaomeng [1 ,2 ]
Yu, Zhangsheng [1 ,2 ,3 ]
机构
[1] Shanghai Jiao Tong Univ, Sch Math Sci, Shanghai, Peoples R China
[2] Shanghai Jiao Tong Univ, SJTU Yale Joint Ctr Biostat, Sch Life Sci & Biotechnol, Shanghai, Peoples R China
[3] Shanghai Jiao Tong Univ, Clin Res Inst, Sch Med, Shanghai, Peoples R China
基金
中国国家自然科学基金;
关键词
Cause-specific hazard; cross-validation; kernel smoothing; local pseudo-partial likelihood; COMPETING RISKS; CUMULATIVE INCIDENCE; LOCAL LIKELIHOOD; FAILURE; SPLINES; TIMES;
D O I
10.1080/10485252.2023.2197088
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We study the local kernel pseudo-partial likelihood approach for the cause-specific hazard model with nonparametric covariate functions. The derivative of the covariate function is estimated first, and the estimator of the nonparametric covariate function is then derived by integrating the derivative estimator. The consistency and pointwise asymptotic normality of the local kernel estimator for the interested failure types are obtained. Moreover, numerical studies show that the proposed kernel estimator performs well under a finite sample size. And we compare the local kernel estimator with the regression B-splines estimator. We also apply the proposed method to analyse the kidney and renal pelvis cancer data with composite endpoints.
引用
收藏
页码:642 / 667
页数:26
相关论文
共 31 条
[1]   COX REGRESSION-MODEL FOR COUNTING-PROCESSES - A LARGE SAMPLE STUDY [J].
ANDERSEN, PK ;
GILL, RD .
ANNALS OF STATISTICS, 1982, 10 (04) :1100-1120
[2]   Accounting for competing risks in randomized controlled trials: a review and recommendations for improvement [J].
Austin, Peter C. ;
Fine, Jason P. .
STATISTICS IN MEDICINE, 2017, 36 (08) :1203-1209
[3]   Semiparametric regression on cumulative incidence function with interval-censored competing risks data [J].
Bakoyannis, Giorgos ;
Yu, Menggang ;
Yiannoutsos, Constantin T. .
STATISTICS IN MEDICINE, 2017, 36 (23) :3683-3707
[4]   Flexible modeling of competing risks in survival analysis [J].
Belot, Aurelien ;
Abrahamowicz, Michal ;
Remontet, Laurent ;
Giorgi, Roch .
STATISTICS IN MEDICINE, 2010, 29 (23) :2453-2468
[5]   Generating survival times to simulate Cox proportional hazards models [J].
Bender, R ;
Augustin, T ;
Blettner, M .
STATISTICS IN MEDICINE, 2005, 24 (11) :1713-1723
[6]   Simulating competing risks data in survival analysis [J].
Beyersmann, Jan ;
Latouche, Aurelien ;
Buchholz, Anika ;
Schumacher, Martin .
STATISTICS IN MEDICINE, 2009, 28 (06) :956-971
[7]   Efficient estimation and inferences for varying-coefficient models [J].
Cai, ZW ;
Fan, JQ ;
Li, RZ .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2000, 95 (451) :888-902
[8]  
Fan JQ, 1997, ANN STAT, V25, P1661
[9]   A proportional hazards model for the subdistribution of a competing risk [J].
Fine, JP ;
Gray, RJ .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1999, 94 (446) :496-509
[10]   Parametric Cause-Specific Hazard Modeling with Nonproportional Covariate Effects: A Case Study Using Liver Transplant Data [J].
Gaynor, Jeffrey J. ;
Moon, Jang I. ;
Kato, Tomoaki ;
Sageshima, Junichiro ;
Tryphonopoulos, Panagiotis ;
Nishida, Seigo ;
Selvaggi, Gennaro ;
Levi, David M. ;
Island, Eddie R. ;
Weppler, Debbie ;
Ciancio, Gaetano ;
Burke, George W., III ;
Ruiz, Phillip ;
Tzakis, Andreas G. .
STATISTICS IN BIOPHARMACEUTICAL RESEARCH, 2010, 2 (01) :133-142