Support varieties and stable categories for algebraic groups

被引:0
作者
Friedlander, Eric M. [1 ]
机构
[1] Univ Southern Calif, Dept Math, Los Angeles, CA 90089 USA
关键词
support varieties; stable categories; algebraic groups; 1-PARAMETER SUBGROUPS; MODULES; COHOMOLOGY; SPECTRUM;
D O I
10.1112/S0010437X23007078
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider rational representations of a connected linear algebraic group G over a field k of positive characteristic p > 0. We introduce a natural extension M ->(G)(M) to G -modules of the pi-point support theory for modules M for a finite group scheme G and show that this theory is essentially equivalent to the more intrinsic' and explicit' theory M -> P(sic)(G)(M) of supports for an algebraic group of exponential type, a theory which uses 1-parameter subgroups G(a) -> G. We extend our support theory to bounded complexes of G -modules, C-center dot ->Pi(G)(C)(center dot.) We introduce the tensor triangulated category StMod(G), the Verdier quotient of the bounded derived category D-b(Mod(G)) by the thick subcategory of mock injective modules. Our support theory satisfies all the standard properties' for a theory of supports for StMod(G). As an application, we employ C-center dot ->Pi(G)(C)(center dot.) to establish the classification of (r)-complete, thick tensor ideals of stmod(G) in terms of locally stmod(G)-realizable subsets of Pi(G) and the classification of (r)-complete, localizing subcategories of StMod(G) in terms of locally StMod(G)-realizable subsets of Pi(G).
引用
收藏
页码:746 / 779
页数:35
相关论文
共 37 条
  • [1] QUILLEN STRATIFICATION FOR MODULES
    AVRUNIN, GS
    SCOTT, LL
    [J]. INVENTIONES MATHEMATICAE, 1982, 66 (02) : 277 - 286
  • [2] Balmer P, 2005, J REINE ANGEW MATH, V588, P149
  • [3] STRATIFICATION FOR MODULE CATEGORIES OF FINITE GROUP SCHEMES
    Benson, Dave
    Iyengar, Srikanth B.
    Krause, Henning
    Pevtsova, Julia
    [J]. JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2018, 31 (01) : 265 - 302
  • [4] A REALIZATION THEOREM FOR MODULES OF CONSTANT JORDAN TYPE AND VECTOR BUNDLES
    Benson, Dave
    Pevtsova, Julia
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2012, 364 (12) : 6459 - 6478
  • [5] Benson DJ, 1997, FUND MATH, V153, P59
  • [6] Carlson J., 1981, LECT NOTES MATH, P415
  • [7] THE VARIETY OF AN INDECOMPOSABLE MODULE IS CONNECTED
    CARLSON, JF
    [J]. INVENTIONES MATHEMATICAE, 1984, 77 (02) : 291 - 299
  • [8] Modules of constant Jordan type
    Carlson, Jon F.
    Friedlander, Eric M.
    Pevtsova, Julia
    [J]. JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2008, 614 : 191 - 234
  • [9] RATIONAL AND GENERIC CHOHOMOLOGY
    CLINE, E
    PARSHALL, B
    SCOTT, L
    VANDERKALLEN, W
    [J]. INVENTIONES MATHEMATICAE, 1977, 39 (02) : 143 - 163
  • [10] INDUCED MODULES AND AFFINE QUOTIENTS
    CLINE, E
    PARSHALL, B
    SCOTT, L
    [J]. MATHEMATISCHE ANNALEN, 1977, 230 (01) : 1 - 14