An exact formula for the variance of linear statistics in the one-dimensional jellium model

被引:8
作者
Flack, Ana [1 ]
Majumdar, Satya N. [1 ]
Schehr, Gregory [2 ]
机构
[1] Univ Paris Saclay, Univ Paris Sud, LPTMS, CNRS, F-91405 Saclay, France
[2] Sorbonne Univ, Lab Phys Theor & Hautes Energies, CNRS UMR 7589, 4 Pl Jussieu, F-75252 Paris 05, France
关键词
Coulomb gas; random matrices; long-range interactions; CENTRAL-LIMIT-THEOREM; RANDOM-MATRIX THEORY; ENERGY-LEVELS; FLUCTUATIONS; EIGENVALUES; MECHANICS; SYSTEM; LOG;
D O I
10.1088/1751-8121/acb86a
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider the jellium model of N particles on a line confined in an external harmonic potential and with a pairwise one-dimensional Coulomb repulsion of strength alpha > 0. Using a Coulomb gas method, we study the statistics of s = (1/N) sigma(N)(i=1) f(x(i)) where f (x), in principle, is an arbitrary smooth function. While the mean of s is easy to compute, the variance is nontrivial due to the long-range Coulomb interactions. In this paper we demonstrate that the fluctuations around this mean are Gaussian with a variance Var(s) asymptotic to b/N-3 for large N. In this paper, we provide an exact compact formula for the con-stant b = 1/(4 alpha) integral(2 alpha)(-2 alpha) [f '(x)](2) dx. In addition, we also calculate the full large deviation function characterizing the tails of the full distribution P(s,N) for several different examples of f (x). Our analytical predictions are confirmed by numerical simulations.
引用
收藏
页数:23
相关论文
共 68 条
[1]   Harmonically Confined Particles with Long-Range Repulsive Interactions [J].
Agarwal, S. ;
Dhar, A. ;
Kulkarni, M. ;
Kundu, A. ;
Majumdar, S. N. ;
Mukamel, D. ;
Schehr, G. .
PHYSICAL REVIEW LETTERS, 2019, 123 (10)
[2]   Some Connections Between the Classical Calogero-Moser Model and the Log-Gas [J].
Agarwal, Sanaa ;
Kulkarni, Manas ;
Dhar, Abhishek .
JOURNAL OF STATISTICAL PHYSICS, 2019, 176 (06) :1463-1479
[3]   STRUCTURE OF GIBBS-STATES OF ONE DIMENSIONAL COULOMB-SYSTEMS [J].
AIZENMAN, M ;
MARTIN, PA .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1980, 78 (01) :99-116
[4]   Statistics of thermal to shot noise crossover in chaotic cavities [J].
Al Osipov, Vladimir ;
Kanzieper, Eugene .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2009, 42 (47)
[5]   FLUCTUATIONS OF EIGENVALUES OF RANDOM NORMAL MATRICES [J].
Ameur, Yacin ;
Hedenmalm, Hakan ;
Makarov, Nikolai .
DUKE MATHEMATICAL JOURNAL, 2011, 159 (01) :31-81
[6]   LOCAL LAWS AND RIGIDITY FOR COULOMB GASES AT ANY TEMPERATURE [J].
Armstrong, Scott ;
Serfaty, Sylvia .
ANNALS OF PROBABILITY, 2021, 49 (01) :46-121
[7]   Finite-N fluctuation formulas for random matrices [J].
Baker, TH ;
Forrester, PJ .
JOURNAL OF STATISTICAL PHYSICS, 1997, 88 (5-6) :1371-1386
[8]   VARIANCE CALCULATIONS AND THE BESSEL KERNEL [J].
BASOR, EL ;
TRACY, CA .
JOURNAL OF STATISTICAL PHYSICS, 1993, 73 (1-2) :415-421
[9]  
BAXTER RJ, 1963, P CAMB PHILOS SOC, V59, P779
[10]   UNIVERSALITY IN THE RANDOM-MATRIX THEORY OF QUANTUM TRANSPORT [J].
BEENAKKER, CWJ .
PHYSICAL REVIEW LETTERS, 1993, 70 (08) :1155-1158