Rigidity Results for Riemann and Schouten Solitons

被引:5
作者
Tokura, Willian [1 ]
Barboza, Marcelo [2 ]
Batista, Elismar [3 ]
Menezes, Ilton [4 ]
机构
[1] Univ Fed Acre, CCET, BR-69920900 Rio Branco, AC, Brazil
[2] Univ Fed Goias, IME, BR-74001970 Goiania, GO, Brazil
[3] Inst Fed Tocantins, Campus Dianopolis, BR-77300000 Dianopolis, TO, Brazil
[4] Univ Fed Oeste Bahia, CCET, BR-47810047 Barreiras, BA, Brazil
关键词
Riemann flow; Riemann solitons; gradient Riemann solitons; Schouten solitons; rigidity results; RICCI SOLITONS; GRADIENT; COMPACT;
D O I
10.1007/s00009-023-02319-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we take a look at conditions that make a Riemann soliton trivial, compacity being one of them. We also obtain scalar curvature estimates for complete shrinking or steady gradient Riemann solitons whose scalar curvature is bounded from below at infinity.
引用
收藏
页数:9
相关论文
共 22 条
[1]   On gradient Ricci solitons conformal to a pseudo-Euclidean space [J].
Barbosa, Ezequiel ;
Pina, Romildo ;
Tenenblat, Keti .
ISRAEL JOURNAL OF MATHEMATICS, 2014, 200 (01) :213-224
[2]   Compact almost Ricci solitons with constant scalar curvature are gradient [J].
Barros, A. ;
Batista, R. ;
Ribeiro, E., Jr. .
MONATSHEFTE FUR MATHEMATIK, 2014, 174 (01) :29-39
[3]  
Batista E., 2019, ARXIV
[4]  
Besse A. L., 2007, EINSTEIN MANIFOLDS
[5]   Remarks on almost Riemann solitons with gradient or torse-forming vector field [J].
Blaga, Adara M. .
BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2021, 44 (05) :3215-3227
[6]  
Borges V, 2021, Arxiv, DOI arXiv:2103.12796
[7]   On complete gradient Schouten solitons [J].
Borges, Valter .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2022, 221
[8]   A potential generalization of some canonical Riemannian metrics [J].
Catino, Giovanni ;
Mastrolia, Paolo .
ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2019, 55 (04) :719-748
[9]   Gradient Einstein solitons [J].
Catino, Giovanni ;
Mazzieri, Lorenzo .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2016, 132 :66-94
[10]  
Hirica I. E., 2016, Balkan J. Geom. Appl., V21, P35