Robust Heading Estimation Algorithm for Android Smartphones

被引:5
作者
Cao, Hongji [1 ]
Wang, Yunjia [2 ]
Bi, Jingxue [1 ]
Qi, Hongxia [3 ]
Sun, Meng [2 ]
机构
[1] Shandong Jianzhu Univ, Coll Surveying & Geoinformat, Jinan 221116, Peoples R China
[2] China Univ Min & Technol, Sch Environm Sci & Spatial Informat, Xuzhou 221116, Peoples R China
[3] Jiangsu Vocat Inst Architectural Technol, Sch Architectural Construct, Xuzhou 221116, Peoples R China
基金
中国国家自然科学基金;
关键词
Estimation; Gyroscopes; Smart phones; Magnetometers; Accelerometers; Navigation; Genetic algorithms; Genetic algorithm (GA); gradient descent (GD); heading; triaxial errors; ATTITUDE ESTIMATION; KALMAN FILTER; QUATERNION; ACCELEROMETERS;
D O I
10.1109/TIM.2023.3238760
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This article proposes a robust heading estimation algorithm for smartphones, which integrates the gradient descent (GD) approach and genetic algorithm (GA) to compute the heading angle of smartphones and reduce the heading error accumulation induced by the errors of sensors. In the proposed algorithm, the accelerometer, magnetometer, and gyroscope are used to estimate the heading angle. The sum of squared triaxial errors of geomagnetic strength and acceleration is regarded as the fitness of GA to improve the accuracy of heading angle and restrain the error accumulation. The angular velocity given by gyroscope is used to generate the initial point of GA. To improve the convergence rate and local search capability of GA, a search area adjustment strategy based on GD is designed to obtain the optimal search area for each iteration of GA. Experimental results show that the proposed algorithm can achieve better heading estimation accuracy on three smartphones and four orientations, with a mean heading error of 1.577 degrees on Mate 20 smartphone.
引用
收藏
页数:11
相关论文
共 27 条
[1]  
Ando B., 2016, 2016 IEEE Sensors Applications Symposium (SAS), P1, DOI 10.1109/SAS.2016.7479839
[2]  
Camps F, 2009, INT CONF ELECTRO INF, P215
[3]   Heading Estimation for Indoor Pedestrian Navigation Using a Smartphone in the Pocket [J].
Deng, Zhi-An ;
Wang, Guofeng ;
Hu, Ying ;
Wu, Di .
SENSORS, 2015, 15 (09) :21518-21536
[4]   Quaternion-based fusion of gyroscopes and accelerometers to improve 3D angle measurement [J].
Favre, J. ;
Jolles, B. M. ;
Siegrist, O. ;
Aminian, K. .
ELECTRONICS LETTERS, 2006, 42 (11) :612-614
[5]   IDNet: Smartphone-based gait recognition with convolutional neural networks [J].
Gadaleta, Matteo ;
Rossi, Michele .
PATTERN RECOGNITION, 2018, 74 :25-37
[6]   Accurate Step Length Estimation for Pedestrian Dead Reckoning Localization Using Stacked Autoencoders [J].
Gu, Fuqiang ;
Khoshelham, Kourosh ;
Yu, Chunyang ;
Shang, Jianga .
IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2019, 68 (08) :2705-2713
[7]   Yaw/Heading optimization by drift elimination on MEMS gyroscope [J].
Hoang, Minh Long ;
Pietrosanto, Antonio .
SENSORS AND ACTUATORS A-PHYSICAL, 2021, 325
[8]  
Holland John H., 1992, ADAPTATION NATURAL A, DOI DOI 10.1086/418447
[9]   A quaternion-based orientation estimation algorithm using an inertial measurement unit [J].
Kim, A ;
Golnaraghi, MF .
PLANS 2004: POSITION LOCATION AND NAVIGATION SYMPOSIUM, 2004, :268-272
[10]   Pedestrian dead reckoning with novel heading estimation under magnetic interference and multiple smartphone postures [J].
Li, Wei ;
Chen, Ruizhi ;
Yu, Yue ;
Wu, Yuan ;
Zhou, Haitao .
MEASUREMENT, 2021, 182