Graph-Driven Federated Data Management

被引:5
|
作者
Nadal, Sergi [1 ]
Abello, Alberto [1 ]
Romero, Oscar [1 ]
Vansummeren, Stijn [2 ]
Vassiliadis, Panos [3 ]
机构
[1] Univ Politecn Cataluna, Barcelona 08034, Spain
[2] UHasselt Hasselt Univ, Data Sci Inst, B-3590 Diepenbeek, Belgium
[3] Univ Ioannina, Ioannina 45110, Greece
关键词
Data integration; data wrangling; GLAV mappings; QUERIES; INTEGRATION; ONTOLOGY;
D O I
10.1109/TKDE.2021.3077044
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Modern data analysis applications require the ability to provide on-demand integration of data sources while offering a flexible and user-friendly query interface. Traditional techniques for answering queries using views, focused on a rather static setting, fail to address such requirements. To overcome these issues, we propose a fully-fledged data integration approach based on graph-based constructs. The extensibility of graphs allows us to extend the traditional framework for data integration with view definitions. Furthermore, we also propose a query language based on subgraphs. We tackle query answering via a query rewriting algorithm based on well-known algorithms for answering queries using views. We experimentally show that the proposed method yields good performance and does not introduce a significant overhead.
引用
收藏
页码:509 / 520
页数:12
相关论文
共 50 条
  • [1] Graph-Driven Federated Data Management (Extended Abstract)
    Nadal, Sergi
    Abello, Alberto
    Romero, Oscar
    Vansummerem, Stijn
    Vassiliadis, Panos
    2022 IEEE 38TH INTERNATIONAL CONFERENCE ON DATA ENGINEERING (ICDE 2022), 2022, : 1507 - 1508
  • [2] Knowledge graph-driven data processing for business intelligence
    Dey, Lipika
    WILEY INTERDISCIPLINARY REVIEWS-DATA MINING AND KNOWLEDGE DISCOVERY, 2024, 14 (03)
  • [3] Dynamic spatial-temporal graph-driven machine remaining useful life prediction method using graph data augmentation
    Yang, Chaoying
    Liu, Jie
    Zhou, Kaibo
    Li, Xinyu
    JOURNAL OF INTELLIGENT MANUFACTURING, 2024, 35 (01) : 355 - 366
  • [4] Heterogeneous knowledge graph-driven subassembly identification with ensemble deep learning in Industry 4.0
    Zhang, Chao
    Jing, Yanzhen
    Zhou, Guanghui
    Yan, Hairui
    Chang, Fengtian
    INTERNATIONAL JOURNAL OF PRODUCTION RESEARCH, 2024,
  • [5] Knowledge graph-driven decision support for manufacturing process: A graph neural network-based knowledge reasoning approach
    Su, Chang
    Jiang, Qi
    Han, Yong
    Wang, Tao
    He, Qingchen
    ADVANCED ENGINEERING INFORMATICS, 2025, 64
  • [6] Paleontology Knowledge Graph for Data-Driven Discovery
    Deng, Yiying
    Song, Sicun
    Fan, Junxuan
    Luo, Mao
    Yao, Le
    Dong, Shaochun
    Shi, Yukun
    Zhang, Linna
    Wang, Yue
    Xu, Haipeng
    Xu, Huiqing
    Zhao, Yingying
    Pan, Zhaohui
    Hou, Zhangshuai
    Li, Xiaoming
    Shen, Boheng
    Chen, Xinran
    Zhang, Shuhan
    Wu, Xuejin
    Xing, Lida
    Liang, Qingqing
    Wang, Enze
    JOURNAL OF EARTH SCIENCE, 2024, 35 (03) : 1024 - 1034
  • [7] Blue Brain Nexus: An open, secure, scalable system for knowledge graph management and data-driven science
    Sy, Mohameth Francois
    Roman, Bogdan
    Kerrien, Samuel
    Mendez, Didac Montero
    Genet, Henry
    Wajerowicz, Wojciech
    Dupont, Michael
    Lavriushev, Ian
    Machon, Julien
    Pirman, Kenneth
    Mana, Dhanesh Neela
    Stafeeva, Natalia
    Kaufmann, Anna-Kristin
    Lu, Huanxiang
    Lurie, Jonathan
    Fonta, Pierre-Alexandre
    Martinez, Alejandra Garcia Rojas
    Ulbrich, Alexander D.
    Lindqvist, Carolina
    Jimenez, Silvia
    Rotenberg, David
    Markram, Henry
    Hill, Sean L.
    SEMANTIC WEB, 2023, 14 (04) : 697 - 727
  • [8] FDC Cache: Semantics-driven Federated Caching and Querying for Big Data
    Cuddihy, Paul
    Williams, Jenny Weisenberg
    Kumar, Vijay S.
    Aggour, Kareem S.
    Crapo, Andrew
    Dixit, Sharad
    2020 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2020, : 1493 - 1502
  • [9] Data-Driven Methodology for Knowledge Graph Generation Within the Tourism Domain
    Chessa, Alessandro
    Fenu, Gianni
    Motta, Enrico
    Osborne, Francesco
    Recupero, Diego Reforgiato
    Salatino, Angelo
    Secchi, Luca
    IEEE ACCESS, 2023, 11 : 67567 - 67599
  • [10] Is Sharing Neighbor Generator in Federated Graph Learning Safe?
    Yao, Liuyi
    Wang, Zhen
    Xie, Yuexiang
    Li, Yaliang
    Kuang, Weirui
    Chen, Daoyuan
    Ding, Bolin
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2024, 36 (12) : 8568 - 8579