A priori and a posteriori error estimates for the Deep Ritz method applied to the Laplace and Stokes problem

被引:9
作者
Minakowski, P. [1 ]
Richter, T. [1 ]
机构
[1] Otto von Guericke Univ, Univ Pl 2, D-39106 Magdeburg, Germany
关键词
Neural networks; Finite elements; Error estimates; Dual weighted residual method; A posteriori error estimates; ALGORITHM;
D O I
10.1016/j.cam.2022.114845
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We analyze neural network solutions to partial differential equations obtained with Physics Informed Neural Networks. In particular, we apply tools of classical finite element error analysis to obtain conclusions about the error of the Deep Ritz method applied to the Laplace and the Stokes equations. Further, we develop an a posteriori error estimator for neural network approximations of partial differential equations. The proposed approach is based on the dual weighted residual estimator. It is destined to serve as a stopping criterion that guarantees the accuracy of the solution independently of the design of the neural network training. The result is equipped with computational examples for Laplace and Stokes problems.(c) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页数:16
相关论文
共 36 条
[1]   Artificial Neural Network Methods for the Solution of Second Order Boundary Value Problems [J].
Anitescu, Cosmin ;
Atroshchenko, Elena ;
Alajlan, Naif ;
Rabczuk, Timon .
CMC-COMPUTERS MATERIALS & CONTINUA, 2019, 59 (01) :345-359
[2]   UNIVERSAL APPROXIMATION BOUNDS FOR SUPERPOSITIONS OF A SIGMOIDAL FUNCTION [J].
BARRON, AR .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1993, 39 (03) :930-945
[3]  
Becker R, 2001, ACT NUMERIC, V10, P1, DOI 10.1017/S0962492901000010
[4]   A posteriori error estimation for finite element discretization of parameter identification problems [J].
Becker, R ;
Vexler, B .
NUMERISCHE MATHEMATIK, 2004, 96 (03) :435-459
[5]  
Becker R, 1998, ENUMATH 97 - 2ND EUROPEAN CONFERENCE ON NUMERICAL MATHEMATICS AND ADVANCED APPLICATIONS, P621
[6]   A unified deep artificial neural network approach to partial differential equations in complex geometries [J].
Berg, Jens ;
Nystrom, Kaj .
NEUROCOMPUTING, 2018, 317 :28-41
[7]   Goal-oriented space-time adaptivity in the finite element Galerkin method for the computation of nonstationary incompressible flow [J].
Besier, Michael ;
Rannacher, Rolf .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2012, 70 (09) :1139-1166
[8]   A machine-learning minimal-residual (ML-MRes) framework for goal-oriented finite element discretizations [J].
Brevis, Ignacio ;
Muga, Ignacio ;
van der Zee, Kristoffer G. .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2021, 95 :186-199
[9]  
Caflisch R. E., 1998, Acta Numerica, V7, P1, DOI 10.1017/S0962492900002804
[10]   Error bounds for approximations with deep ReLU neural networks in Ws,p norms [J].
Guehring, Ingo ;
Kutyniok, Gitta ;
Petersen, Philipp .
ANALYSIS AND APPLICATIONS, 2020, 18 (05) :803-859