Recursively Feasible Data-Driven Distributionally Robust Model Predictive Control With Additive Disturbances

被引:7
作者
Mark, Christoph [1 ]
Liu, Steven [1 ]
机构
[1] Univ Kaiserslautern, Inst Control Syst, Dept Elect & Comp Engn, D-67663 Kaiserslautern, Germany
来源
IEEE CONTROL SYSTEMS LETTERS | 2023年 / 7卷
关键词
Random variables; Linear matrix inequalities; Additives; Symmetric matrices; Stochastic processes; Predictive control; Cost function; Predictive control for linear systems; distributionally robust optimization; stochastic optimal control;
D O I
10.1109/LCSYS.2022.3199940
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this letter we propose a data-driven distributionally robust Model Predictive Control framework for constrained stochastic systems with unbounded additive disturbances. Recursive feasibility is ensured by optimizing over a linearly interpolated initial state constraint in combination with a simplified affine disturbance feedback policy. We consider a moment-based ambiguity set with data-driven radius for the second moment of the disturbance, where we derive a minimum number of samples in order to ensure user-given confidence bounds on the chance constraints and closed-loop performance. This letter closes with a numerical example, highlighting the performance gain and chance constraint satisfaction based on different sample sizes.
引用
收藏
页码:526 / 531
页数:6
相关论文
共 22 条
[11]  
Hewing L, 2018, IEEE DECIS CONTR P, P5182, DOI 10.1109/CDC.2018.8619554
[12]   Tail inequalities for sums of random matrices that depend on the intrinsic dimension [J].
Hsu, Daniel ;
Kakade, Sham M. ;
Zhang, Tong .
ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2012, 17 :1-13
[13]   Recursively Feasible Stochastic Predictive Control Using an Interpolating Initial State Constraint [J].
Koehler, Johannes ;
Zeilinger, Melanie N. .
IEEE CONTROL SYSTEMS LETTERS, 2022, 6 :2743-2748
[14]  
Kouvaritakis B, 2016, ADV TXB CONTR SIG PR, P1, DOI 10.1007/978-3-319-24853-0
[15]  
Lofberg J., 2004, Computer Aided Control Systems Design, 2004 IEEE International Symposium on, P284, DOI [10.1109/CACSD.2004.1393890, DOI 10.1109/CACSD.2004.1393890]
[16]   Soft-constrained model predictive control based on data-driven distributionally robust optimization [J].
Lu, Shuwen ;
Lee, Jay H. ;
You, Fengqi .
AICHE JOURNAL, 2020, 66 (10)
[17]  
Mark C., 2021, ARXIV
[18]   Stochastic MPC with Distributionally Robust Chance Constraints [J].
Mark, Christoph ;
Liu, Steven .
IFAC PAPERSONLINE, 2020, 53 (02) :7136-7141
[19]   Robust model predictive control of constrained linear systems with bounded disturbances [J].
Mayne, DQ ;
Seron, MM ;
Rakovic, SV .
AUTOMATICA, 2005, 41 (02) :219-224
[20]  
Rahimian H, 2019, Arxiv, DOI arXiv:1908.05659