Recursively Feasible Data-Driven Distributionally Robust Model Predictive Control With Additive Disturbances

被引:7
作者
Mark, Christoph [1 ]
Liu, Steven [1 ]
机构
[1] Univ Kaiserslautern, Inst Control Syst, Dept Elect & Comp Engn, D-67663 Kaiserslautern, Germany
来源
IEEE CONTROL SYSTEMS LETTERS | 2023年 / 7卷
关键词
Random variables; Linear matrix inequalities; Additives; Symmetric matrices; Stochastic processes; Predictive control; Cost function; Predictive control for linear systems; distributionally robust optimization; stochastic optimal control;
D O I
10.1109/LCSYS.2022.3199940
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this letter we propose a data-driven distributionally robust Model Predictive Control framework for constrained stochastic systems with unbounded additive disturbances. Recursive feasibility is ensured by optimizing over a linearly interpolated initial state constraint in combination with a simplified affine disturbance feedback policy. We consider a moment-based ambiguity set with data-driven radius for the second moment of the disturbance, where we derive a minimum number of samples in order to ensure user-given confidence bounds on the chance constraints and closed-loop performance. This letter closes with a numerical example, highlighting the performance gain and chance constraint satisfaction based on different sample sizes.
引用
收藏
页码:526 / 531
页数:6
相关论文
共 22 条
[1]  
[Anonymous], 2019, MOSEK OPTIMIZATION T
[2]   On distributionally robust chance-constrained linear programs [J].
Calafiore, G. C. ;
El Ghaoui, L. .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2006, 130 (01) :1-22
[3]   Distributed synthesis and stability of cooperative distributed model predictive control for linear systems [J].
Conte, Christian ;
Jones, Colin N. ;
Morari, Manfred ;
Zeilinger, Melanie N. .
AUTOMATICA, 2016, 69 :117-125
[4]   Data-Driven Distributionally Robust MPC for Constrained Stochastic Systems [J].
Coppens, Peter ;
Patrinos, Panagiotis .
IEEE CONTROL SYSTEMS LETTERS, 2022, 6 :1274-1279
[5]  
Coppens P, 2020, PR MACH LEARN RES, V120, P521
[6]   Distributionally Robust Chance Constrained Data-Enabled Predictive Control [J].
Coulson, Jeremy ;
Lygeros, John ;
Dorfler, Florian .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2022, 67 (07) :3289-3304
[7]   Distributionally Robust Optimization Under Moment Uncertainty with Application to Data-Driven Problems [J].
Delage, Erick ;
Ye, Yinyu .
OPERATIONS RESEARCH, 2010, 58 (03) :595-612
[8]  
Dixit A, 2022, Arxiv, DOI arXiv:2203.12062
[9]   Stochastic linear Model Predictive Control with chance constraints - A review [J].
Farina, Marcello ;
Giulioni, Luca ;
Scattolini, Riccardo .
JOURNAL OF PROCESS CONTROL, 2016, 44 :53-67
[10]  
Farina M, 2013, IEEE DECIS CONTR P, P7734, DOI 10.1109/CDC.2013.6761117