Non parametric estimations of the conditional density and mode when the regressor and the response are curves
被引:2
作者:
Laksaci, Ali
论文数: 0引用数: 0
h-index: 0
机构:
King Khalid Univ, Coll Sci, Dept Math, Unit Stat Res & Studies Support, Abha, Saudi ArabiaKing Khalid Univ, Coll Sci, Dept Math, Unit Stat Res & Studies Support, Abha, Saudi Arabia
Laksaci, Ali
[1
]
Kaid, Zoulikha
论文数: 0引用数: 0
h-index: 0
机构:
King Khalid Univ, Coll Sci, Dept Math, Unit Stat Res & Studies Support, Abha, Saudi ArabiaKing Khalid Univ, Coll Sci, Dept Math, Unit Stat Res & Studies Support, Abha, Saudi Arabia
Kaid, Zoulikha
[1
]
论文数: 引用数:
h-index:
机构:
Alahiane, Mohamed
[2
]
论文数: 引用数:
h-index:
机构:
Ouassou, Idir
[2
]
论文数: 引用数:
h-index:
机构:
Rachdi, Mustapha
[3
]
机构:
[1] King Khalid Univ, Coll Sci, Dept Math, Unit Stat Res & Studies Support, Abha, Saudi Arabia
Derivatives of the conditional density;
conditional mode;
kernel estimation;
functional data analysis;
double-kernel estimator;
entropy;
LOCAL LINEAR-ESTIMATION;
ASYMPTOTIC NORMALITY;
MODELIZATION;
PREDICTION;
D O I:
10.1080/03610926.2021.1998831
中图分类号:
O21 [概率论与数理统计];
C8 [统计学];
学科分类号:
020208 ;
070103 ;
0714 ;
摘要:
We develop new estimation results for the functional relationship between a regressor and a response which are functions indexed by time or by spatial locations. The regressor is assumed to belong to a semi-metric space (E,d) whereas the responses belong to a Hilbert space F. First, we build a double-kernel estimator of the conditional density function, via a Nadaraya-Watson method. Then, we deduce a conditional mode estimator as the value that maximizes the conditional density estimator. Then, we establish the strong uniform consistencies, with rates, of the two constructed estimators. In this context, we wished to set up these preliminary results which will certainly motivate several works on this same subject.