Non parametric estimations of the conditional density and mode when the regressor and the response are curves

被引:2
作者
Laksaci, Ali [1 ]
Kaid, Zoulikha [1 ]
Alahiane, Mohamed [2 ]
Ouassou, Idir [2 ]
Rachdi, Mustapha [3 ]
机构
[1] King Khalid Univ, Coll Sci, Dept Math, Unit Stat Res & Studies Support, Abha, Saudi Arabia
[2] Univ Cadi Ayyad, Ecole Natl Sci Appl, Marrakech, Morocco
[3] Univ Grenoble Alpes, UFR SHS, AGEIS, BP 47, F-38040 Grenoble 09, France
关键词
Derivatives of the conditional density; conditional mode; kernel estimation; functional data analysis; double-kernel estimator; entropy; LOCAL LINEAR-ESTIMATION; ASYMPTOTIC NORMALITY; MODELIZATION; PREDICTION;
D O I
10.1080/03610926.2021.1998831
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We develop new estimation results for the functional relationship between a regressor and a response which are functions indexed by time or by spatial locations. The regressor is assumed to belong to a semi-metric space (E,d) whereas the responses belong to a Hilbert space F. First, we build a double-kernel estimator of the conditional density function, via a Nadaraya-Watson method. Then, we deduce a conditional mode estimator as the value that maximizes the conditional density estimator. Then, we establish the strong uniform consistencies, with rates, of the two constructed estimators. In this context, we wished to set up these preliminary results which will certainly motivate several works on this same subject.
引用
收藏
页码:4659 / 4674
页数:16
相关论文
共 29 条
[1]   Biomarker discovery in MALDI-TOF serum protein profiles using discrete wavelet transformation [J].
Alexandrov, Theodore ;
Decker, Jens ;
Mertens, Bart ;
Deelder, Andre M. ;
Tollenaar, Rob A. E. M. ;
Maass, Peter ;
Thiele, Herbert .
BIOINFORMATICS, 2009, 25 (05) :643-649
[2]   Functional linear regression with functional response [J].
Benatia, David ;
Carrasco, Marine ;
Florens, Jean-Pierre .
JOURNAL OF ECONOMETRICS, 2017, 201 (02) :269-291
[3]   Local smoothing regression with functional data [J].
Benhenni, K. ;
Ferraty, F. ;
Rachdi, M. ;
Vieu, P. .
COMPUTATIONAL STATISTICS, 2007, 22 (03) :353-369
[4]   NONPARAMETRIC PREDICTION OF A HILBERT-SPACE VALUED RANDOM VARIABLE [J].
BOSQ, D ;
DELECROIX, M .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 1985, 19 (02) :271-280
[5]  
Bosq D., 2000, LECT NOTES STAT, V149
[6]   ASYMPTOTIC NORMALITY OF CONDITIONAL MODE ESTIMATION FOR FUNCTIONAL DEPENDENT DATA [J].
Bouanani, Oussama ;
Rahmani, Saadia ;
Laksaci, Ali ;
Rachdi, Mustapha .
INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2020, 51 (02) :465-481
[7]   Kernel regression estimation when the regressor takes values in metric space [J].
Dabo-Niang, S ;
Rhomari, N .
COMPTES RENDUS MATHEMATIQUE, 2003, 336 (01) :75-80
[8]   Asymptotic properties of the kernel estimate of spatial conditional mode when the regressor is functional [J].
Dabo-Niang, Sophie ;
Kaid, Zoulikha ;
Laksaci, Ali .
ASTA-ADVANCES IN STATISTICAL ANALYSIS, 2015, 99 (02) :131-160
[9]   On spatial conditional mode estimation for a functional regressor [J].
Dabo-Niang, Sophie ;
Kaid, Zoulikha ;
Laksaci, Ali .
STATISTICS & PROBABILITY LETTERS, 2012, 82 (07) :1413-1421
[10]   Kernel regression estimation in a Banach space [J].
Dabo-Niang, Sophie ;
Rhomari, Noureddine .
JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2009, 139 (04) :1421-1434