Deep learning-based predictive model for pathological complete response to neoadjuvant chemotherapy in breast cancer from biopsy pathological images: a multicenter study

被引:6
作者
Zeng, Huancheng [1 ]
Qiu, Siqi [2 ,3 ]
Zhuang, Shuxin [4 ]
Wei, Xiaolong [5 ]
Wu, Jundong [1 ]
Zhang, Ranze [6 ]
Chen, Kai [6 ]
Wu, Zhiyong [2 ]
Zhuang, Zhemin [7 ]
机构
[1] Shantou Univ, Canc Hosp, Breast Ctr, Med Coll, Shantou, Peoples R China
[2] Shantou Cent Hosp, Diag & Treatment Ctr Breast Dis, Shantou, Peoples R China
[3] Shantou Cent Hosp, Clin Res Ctr, Shantou, Peoples R China
[4] Sun Yat Sen Univ, Sch Biomed Engn, Shenzhen, Peoples R China
[5] Shantou Univ, Canc Hosp, Pathol Dept, Med Coll, Shantou, Peoples R China
[6] Sun Yat Sen Univ, Sun Yat Sen Mem Hosp, Breast Tumor Ctr, Guangzhou, Peoples R China
[7] Shantou Univ, Engn Coll, Shantou, Peoples R China
基金
中国国家自然科学基金;
关键词
breast cancer; deep learning; neoadjuvant chemotherapy; pathological complete response; pathological images; THERAPY; WOMEN;
D O I
10.3389/fphys.2024.1279982
中图分类号
Q4 [生理学];
学科分类号
071003 ;
摘要
Introduction: Early predictive pathological complete response (pCR) is beneficial for optimizing neoadjuvant chemotherapy (NAC) strategies for breast cancer. The hematoxylin and eosin (HE)-stained slices of biopsy tissues contain a large amount of information on tumor epithelial cells and stromal. The fusion of pathological image features and clinicopathological features is expected to build a model to predict pCR of NAC in breast cancer.Methods: We retrospectively collected a total of 440 breast cancer patients from three hospitals who underwent NAC. HE-stained slices of biopsy tissues were scanned to form whole-slide images (WSIs), and pathological images of representative regions of interest (ROI) of each WSI were selected at different magnifications. Based on several different deep learning models, we propose a novel feature extraction method on pathological images with different magnifications. Further, fused with clinicopathological features, a multimodal breast cancer NAC pCR prediction model based on a support vector machine (SVM) classifier was developed and validated with two additional validation cohorts (VCs).Results: Through experimental validation of several different deep learning models, we found that the breast cancer pCR prediction model based on the SVM classifier, which uses the VGG16 model for feature extraction of pathological images at x20 magnification, has the best prediction efficacy. The area under the curve (AUC) of deep learning pathological model (DPM) were 0.79, 0.73, and 0.71 for TC, VC1, and VC2, respectively, all of which exceeded 0.70. The AUCs of clinical model (CM), a clinical prediction model established by using clinicopathological features, were 0.79 for TC, 0.73 for VC1, and 0.71 for VC2, respectively. The multimodal deep learning clinicopathological model (DPCM) established by fusing pathological images and clinicopathological features improved the AUC of TC from 0.79 to 0.84. The AUC of VC2 improved from 0.71 to 0.78.Conclusion: Our study reveals that pathological images of HE-stained slices of pre-NAC biopsy tissues can be used to build a pCR prediction model. Combining pathological images and clinicopathological features can further enhance the predictive efficacy of the model.
引用
收藏
页数:13
相关论文
共 43 条
[1]   Artificial intelligence as the next step towards precision pathology [J].
Acs, B. ;
Rantalainen, M. ;
Hartman, J. .
JOURNAL OF INTERNAL MEDICINE, 2020, 288 (01) :62-81
[2]   Comparing computer-generated and pathologist-generated tumour segmentations for immunohistochemical scoring of breast tissue microarrays [J].
Akbar, Shazia ;
Jordan, Lee B. ;
Purdie, Colin A. ;
Thompson, Alastair M. ;
McKenna, Stephen J. .
BRITISH JOURNAL OF CANCER, 2015, 113 (07) :1075-1080
[3]   High Proliferation Predicts Pathological Complete Response to Neoadjuvant Chemotherapy in Early Breast Cancer (vol 21, pg 150, 2016) [J].
Alba, Emilio ;
Lluch, Ana ;
Ribelles, Nuria ;
Anton-Torres, Antonio ;
Sanchez-Rovira, Pedro ;
Albanell, Joan ;
Calvo, Lourdes ;
Garcia-Asenjo, Jose Antonio Lopez ;
Palacios, Jose ;
Chacon, Jose Ignacio ;
Ruiz, Amparo ;
De la Haba-Rodriguez, Juan ;
Segui-Palmer, Miguel A. ;
Cirauqui, Beatriz ;
Margeli, Mireia ;
Plazaola, Arrate ;
Barnadas, Agusti ;
Casas, Maribel ;
Caballero, Rosalia ;
Carrasco, Eva ;
Rojo, Federico .
ONCOLOGIST, 2016, 21 (06) :778-778
[4]   Lymphocyte density determined by computational pathology validated as a predictor of response to neoadjuvant chemotherapy in breast cancer: secondary analysis of the ARTemis trial [J].
Ali, H. R. ;
Dariush, A. ;
Thomas, J. ;
Provenzano, E. ;
Dunn, J. ;
Hiller, L. ;
Vallier, A. -L. ;
Abraham, J. ;
Piper, T. ;
Bartlett, J. M. S. ;
Cameron, D. A. ;
Hayward, L. ;
Brenton, J. D. ;
Pharoah, P. D. P. ;
Irwin, M. J. ;
Walton, N. A. ;
Earl, H. M. ;
Caldas, C. .
ANNALS OF ONCOLOGY, 2017, 28 (08) :1832-1835
[5]   Estrogen and Progesterone Receptor Testing in Breast Cancer: ASCO/CAP Guideline Update [J].
Allison, Kimberly H. ;
Hammond, M. Elizabeth H. ;
Dowsett, Mitchell ;
McKernin, Shannon E. ;
Carey, Lisa A. ;
Fitzgibbons, Patrick L. ;
Hayes, Daniel F. ;
Lakhani, Sunil R. ;
Chavez-MacGregor, Mariana ;
Perlmutter, Jane ;
Perou, Charles M. ;
Regan, Meredith M. ;
Rimm, David L. ;
Symmans, W. Fraser ;
Torlakovic, Emina E. ;
Varella, Leticia ;
Viale, Giuseppe ;
Weisberg, Tracey F. ;
McShane, Lisa M. ;
Wolff, Antonio C. .
JOURNAL OF CLINICAL ONCOLOGY, 2020, 38 (12) :1346-+
[6]   Systematic Analysis of Breast Cancer Morphology Uncovers Stromal Features Associated with Survival [J].
Beck, Andrew H. ;
Sangoi, Ankur R. ;
Leung, Samuel ;
Marinelli, Robert J. ;
Nielsen, Torsten O. ;
van de Vijver, Marc J. ;
West, Robert B. ;
van de Rijn, Matt ;
Koller, Daphne .
SCIENCE TRANSLATIONAL MEDICINE, 2011, 3 (108)
[7]   Diagnostic Assessment of Deep Learning Algorithms for Detection of Lymph Node Metastases in Women With Breast Cancer [J].
Bejnordi, Babak Ehteshami ;
Veta, Mitko ;
van Diest, Paul Johannes ;
van Ginneken, Bram ;
Karssemeijer, Nico ;
Litjens, Geert ;
van der Laak, Jeroen A. W. M. .
JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2017, 318 (22) :2199-2210
[8]   Computationally Derived Image Signature of Stromal Morphology Is Prognostic of Prostate Cancer Recurrence Following Prostatectomy in African American Patients [J].
Bhargava, Hersh K. ;
Leo, Patrick ;
Elliott, Robin ;
Janowczyk, Andrew ;
Whitney, Jon ;
Gupta, Sanjay ;
Fu, Pingfu ;
Yamoah, Kosj ;
Khani, Francesca ;
Robinson, Brian D. ;
Rebbeck, Timothy R. ;
Feldman, Michael ;
Lal, Priti ;
Madabhushi, Anant .
CLINICAL CANCER RESEARCH, 2020, 26 (08) :1915-1923
[9]   Automated deep-learning system for Gleason grading of prostate cancer using biopsies: a diagnostic study [J].
Bulten, Wouter ;
Pinckaers, Hans ;
van Boven, Hester ;
Vink, Robert ;
de Bel, Thomas ;
van Ginneken, Bram ;
van der Laak, Jeroen ;
Hulsbergen-van de Kaa, Christina ;
Litjens, Geert .
LANCET ONCOLOGY, 2020, 21 (02) :233-241
[10]   Deep learning identifies morphological features in breast cancer predictive of cancer ERBB2 status and trastuzumab treatment efficacy [J].
Bychkov, Dmitrii ;
Linder, Nina ;
Tiulpin, Aleksei ;
Kuecuekel, Hakan ;
Lundin, Mikael ;
Nordling, Stig ;
Sihto, Harri ;
Isola, Jorma ;
Lehtimaeki, Tiina ;
Kellokumpu-Lehtinen, Pirkko-Liisa ;
von Smitten, Karl ;
Joensuu, Heikki ;
Lundin, Johan .
SCIENTIFIC REPORTS, 2021, 11 (01)