Feature-Based Augmentation in Sarcasm Detection Using Reverse Generative Adversarial Network

被引:1
|
作者
Suhartono, Derwin [1 ]
Handoyo, Alif Tri [1 ]
Adeta Junior, Franz [2 ]
机构
[1] Bina Nusantara Univ, Sch Comp Sci, Comp Sci Dept, Jakarta 11480, Indonesia
[2] Bina Nusantara Univ, Sch Comp Sci, Comp Sci Dept, Cyber Secur Program, Jakarta 11480, Indonesia
来源
CMC-COMPUTERS MATERIALS & CONTINUA | 2023年 / 77卷 / 03期
关键词
Data augmentation; Generative Adversarial Network (GAN); Reverse GAN (RGAN); sarcasm detection; TWEETS;
D O I
10.32604/cmc.2023.045301
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Sarcasm detection in text data is an increasingly vital area of research due to the prevalence of sarcastic content in online communication. This study addresses challenges associated with small datasets and class imbalances in sarcasm detection by employing comprehensive data pre-processing and Generative Adversial Network (GAN) based augmentation on diverse datasets, including iSarcasm, SemEval-18, and Ghosh. This research offers a novel pipeline for augmenting sarcasm data with Reverse Generative Adversarial Network (RGAN). The proposed RGAN method works by inverting labels between original and synthetic data during the training process. This inversion of labels provides feedback to the generator for generating high-quality data closely resembling the original distribution. Notably, the proposed RGAN model exhibits performance on par with standard GAN, showcasing its robust efficacy in augmenting text data. The exploration of various datasets highlights the nuanced impact of augmentation on model performance, with cautionary insights into maintaining a delicate balance between synthetic and original data. The methodological framework encompasses comprehensive data pre-processing and GAN-based augmentation, with a meticulous comparison against Natural Language Processing Augmentation (NLPAug) as an alternative augmentation technique. Overall, the F1-score of our proposed technique outperforms that of the synonym replacement augmentation technique using NLPAug. The increase in F1-score in experiments using RGAN ranged from 0.066% to 1.054%, and the use of standard GAN resulted in a 2.88% increase in F1-score. The proposed RGAN model outperformed the NLPAug method and demonstrated comparable performance to standard GAN, emphasizing its efficacy in text data augmentation.
引用
收藏
页码:3637 / 3657
页数:21
相关论文
共 50 条
  • [21] Generative Adversarial Network for Data Augmentation and Substitution
    Stankovic, Marko
    Bacanin, Nebojsa
    Zivkovic, Miodrag
    Jovanovic, Luka
    Sarac, Marko
    Antonijevic, Milos
    2024 ZOOMING INNOVATION IN CONSUMER TECHNOLOGIES CONFERENCE, ZINC 2024, 2024, : 7 - 12
  • [22] Sarcasm Detection Based on Adversarial Learning
    Zhang Q.
    Du J.
    Xu R.
    Beijing Daxue Xuebao (Ziran Kexue Ban)/Acta Scientiarum Naturalium Universitatis Pekinensis, 2019, 55 (01): : 29 - 36
  • [23] Optimized generative adversarial network with fractional calculus based feature fusion using Twitter stream for spam detection
    Venkateswarlu, B.
    Shenoi, Viswanath V.
    INFORMATION SECURITY JOURNAL, 2022, 31 (05): : 582 - 601
  • [24] Generative Adversarial Network With Dual Multiscale Feature Fusion for Data Augmentation in Fault Diagnosis
    Ren, Zhijun
    Ji, Jinchen
    Zhu, Yongsheng
    Hong, Jun
    Feng, Ke
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2023, 72
  • [25] Data Augmentation Using Generative Adversarial Network for Environmental Sound Classification
    Madhu, Aswathy
    Kumaraswamy, Suresh
    2019 27TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO), 2019,
  • [26] Data Augmentation of Thyroid Ultrasound Images Using Generative Adversarial Network
    Liang, Junzhao
    Chen, Junying
    INTERNATIONAL ULTRASONICS SYMPOSIUM (IEEE IUS 2021), 2021,
  • [27] Generative Adversarial Network Optimization Algorithm Based on Adaptive Data Augmentation
    Yu, Yanan
    Shi, Dunhuang
    Pan, Qi
    INTERNATIONAL JOURNAL OF COMPUTATIONAL INTELLIGENCE AND APPLICATIONS, 2025, 24 (01)
  • [28] Data Augmentation Based on Generative Adversarial Network with Mixed Attention Mechanism
    Yang, Yu
    Sun, Lei
    Mao, Xiuqing
    Zhao, Min
    ELECTRONICS, 2022, 11 (11)
  • [29] APPLICATION OF DATA AUGMENTATION BASED ON GENERATIVE ADVERSARIAL NETWORK IN IMPEDANCE INVERSION
    Wang, Peng
    Xu, Huiqun
    Peng, Zhen
    Wang, Zefeng
    Yang, Mengqiong
    JOURNAL OF SEISMIC EXPLORATION, 2023, 32 (02): : 155 - 168
  • [30] Generative Adversarial Network-based Synthetic Seizure Dataset Augmentation
    Guan, Yushi
    Koerner, Jamie
    Valiante, Taufik A.
    Genov, Roman
    O'Leary, Gerard
    2021 10TH INTERNATIONAL IEEE/EMBS CONFERENCE ON NEURAL ENGINEERING (NER), 2021, : 797 - 800