Feature-Based Augmentation in Sarcasm Detection Using Reverse Generative Adversarial Network

被引:1
|
作者
Suhartono, Derwin [1 ]
Handoyo, Alif Tri [1 ]
Adeta Junior, Franz [2 ]
机构
[1] Bina Nusantara Univ, Sch Comp Sci, Comp Sci Dept, Jakarta 11480, Indonesia
[2] Bina Nusantara Univ, Sch Comp Sci, Comp Sci Dept, Cyber Secur Program, Jakarta 11480, Indonesia
来源
CMC-COMPUTERS MATERIALS & CONTINUA | 2023年 / 77卷 / 03期
关键词
Data augmentation; Generative Adversarial Network (GAN); Reverse GAN (RGAN); sarcasm detection; TWEETS;
D O I
10.32604/cmc.2023.045301
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Sarcasm detection in text data is an increasingly vital area of research due to the prevalence of sarcastic content in online communication. This study addresses challenges associated with small datasets and class imbalances in sarcasm detection by employing comprehensive data pre-processing and Generative Adversial Network (GAN) based augmentation on diverse datasets, including iSarcasm, SemEval-18, and Ghosh. This research offers a novel pipeline for augmenting sarcasm data with Reverse Generative Adversarial Network (RGAN). The proposed RGAN method works by inverting labels between original and synthetic data during the training process. This inversion of labels provides feedback to the generator for generating high-quality data closely resembling the original distribution. Notably, the proposed RGAN model exhibits performance on par with standard GAN, showcasing its robust efficacy in augmenting text data. The exploration of various datasets highlights the nuanced impact of augmentation on model performance, with cautionary insights into maintaining a delicate balance between synthetic and original data. The methodological framework encompasses comprehensive data pre-processing and GAN-based augmentation, with a meticulous comparison against Natural Language Processing Augmentation (NLPAug) as an alternative augmentation technique. Overall, the F1-score of our proposed technique outperforms that of the synonym replacement augmentation technique using NLPAug. The increase in F1-score in experiments using RGAN ranged from 0.066% to 1.054%, and the use of standard GAN resulted in a 2.88% increase in F1-score. The proposed RGAN model outperformed the NLPAug method and demonstrated comparable performance to standard GAN, emphasizing its efficacy in text data augmentation.
引用
收藏
页码:3637 / 3657
页数:21
相关论文
共 50 条
  • [1] Data augmentation in hotspot detection based on generative adversarial network
    Wang, Shuhan
    Gai, Tianyang
    Qu, Tong
    Ma, Bojie
    Su, Xiaojing
    Dong, Lisong
    Zhang, Libin
    Xu, Peng
    Su, Yajuan
    Wei, Yayi
    JOURNAL OF MICRO-NANOPATTERNING MATERIALS AND METROLOGY-JM3, 2021, 20 (03):
  • [2] A Hybrid Capsule Network for Pneumonia Detection Using Image Augmentation Based on Generative Adversarial Network
    Firildak, Kazim
    Talu, Muhammed Fatih
    TRAITEMENT DU SIGNAL, 2021, 38 (03) : 619 - 627
  • [3] Hyperbolic Feature-based Sarcasm Detection in Telugu Conversation Sentences
    Bharti, Santosh Kumar
    Naidu, Reddy
    Babu, Korra Sathya
    JOURNAL OF INTELLIGENT SYSTEMS, 2021, 30 (01) : 73 - 89
  • [4] Sarcasm Detection in Tweets: A Feature-based Approach using Supervised Machine Learning Models
    Rahaman, Arifur
    Kuri, Ratnadip
    Islam, Syful
    Hossain, Md Javed
    Kabir, Mohammed Humayun
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2021, 12 (06) : 454 - 460
  • [5] Robust Data Augmentation Generative Adversarial Network for Object Detection
    Lee, Hyungtak
    Kang, Seongju
    Chung, Kwangsue
    SENSORS, 2023, 23 (01)
  • [6] Data Augmentation Using Generative Adversarial Network for Automatic Machine Fault Detection Based on Vibration Signals
    Bui, Van
    Pham, Tung Lam
    Nguyen, Huy
    Jang, Yeong Min
    APPLIED SCIENCES-BASEL, 2021, 11 (05): : 1 - 16
  • [7] Abnormal Traffic Detection Based on Generative Adversarial Network and Feature Optimization Selection
    Ma, Wengang
    Zhang, Yadong
    Guo, Jin
    Li, Kehong
    INTERNATIONAL JOURNAL OF COMPUTATIONAL INTELLIGENCE SYSTEMS, 2021, 14 (01) : 1170 - 1188
  • [8] Infrared Unmanned Aerial Vehicle detection based on Generative Adversarial Network data augmentation
    Gao, Yuan
    Luo, Zijuan
    Yu, Xuelian
    Ren, Kan
    Ye, Yunfei
    Chen, Qian
    AOPC 2021: INFRARED DEVICE AND INFRARED TECHNOLOGY, 2021, 12061
  • [9] Deep learning hotspots detection with generative adversarial network-based data augmentation
    Cheng, Zeyuan
    Behdinan, Kamran
    JOURNAL OF MICRO-NANOPATTERNING MATERIALS AND METROLOGY-JM3, 2022, 21 (02):
  • [10] Generative adversarial network based data augmentation for CNN based detection of Covid-19
    Gulakala, Rutwik
    Markert, Bernd
    Stoffel, Marcus
    SCIENTIFIC REPORTS, 2022, 12 (01)