Preparation of superhydrophilic sodium alginate/chitosan-Ag composite membranes with antibacterial activity for effective oil-water emulsion separation

被引:11
|
作者
Li, Shudi [1 ,3 ,4 ]
Lu, Wanyu [1 ]
Tang, Qijin [1 ]
Xiao, Qian [1 ]
Kang, Yixin [1 ]
Hu, Lingye [5 ]
Huang, Yong [6 ]
Peng, Chao [2 ]
Yang, Hao [1 ]
机构
[1] Wuhan Inst Technol, Sch Environm Ecol & Biol Engn, Key Lab Green Chem Proc, Minist Educ, Wuhan 430205, Hubei, Peoples R China
[2] China Univ Geosci, Fac Engn, Wuhan 430074, Hubei, Peoples R China
[3] Chinese Acad Sci, Inst Intelligent Machines, Hefei Inst Phys Sci, Hefei 230031, Peoples R China
[4] Univ Sci & Technol China, Sci Isl Branch, Grad Sch, Hefei 230009, Peoples R China
[5] Univ Sydney, Fac Engn, Sydney, NSW 2008, Australia
[6] Hebei North Univ, Coll Lab Med, Key Lab Biomed Mat Zhangjiakou, Zhangjiakou 075000, Peoples R China
基金
中国国家自然科学基金;
关键词
Superhydrophilic; Sodium alginate; Silver; Emulsion separation; Antibacterial activity; Biofilm; OIL/WATER SEPARATION; FACILE FABRICATION; EFFICIENT; NANOPARTICLES; ROUTE; MESH;
D O I
10.1016/j.ces.2023.119547
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Oily wastewater as one of water pollutions has always been a hot issue in the field of chemical engineering and environment protection, and it is still challenge to separate oil water mixture effectively with low energy consumption. Polymer membranes with superhydrophilic and underwater superoleophobic properties are perfect substances for oil-water separation owning to their high separation efficiency, oil anti-adhesion and energy saving. However, these membranes are easily contaminated by microorganisms, leading to biofilms on the surfaces, and reducing their separation flux and efficiency. In order to solve the problems, sodium alginate/ chitosan-Ag composite were successfully coated on commercial nylon membranes by self-assembly method, and the effects of the Ag on separation performance and biological activity of the membranes were investigated in detail. Under the optimized condition, the membrane can effectively separate oil-in-water emulsions containing anionic, cationic or non-ionic surfactants, with a maximum separation efficiency of 99.73%. More importantly, the inhibition ratios of the membrane could reach 95.42% and 98.05% against E. coli and S. aureus, respectively, and thus inhibits the formation of S. aureus biofilm, and maintain a high relative flux after being contaminated by S. aureus. The simple preparation process and incredible emulsion separation performance with antibacterial activity of composite membranes will provide great prospects for potential industrial applications.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] Durable, cost-effective and superhydrophilic chitosan-alginate hydrogel-coated mesh for efficient oil/water separation
    Li, Yuqi
    Zhang, Hui
    Ma, Cen
    Yin, Hao
    Gong, Lingzhu
    Duh, Yihshing
    Feng, Ren
    CARBOHYDRATE POLYMERS, 2019, 226
  • [42] Preparation and characterization of novel sodium alginate/chitosan two ply composite membranes
    Ma, Lihua
    Yu, Weiting
    Ma, Xiaojun
    JOURNAL OF APPLIED POLYMER SCIENCE, 2007, 106 (01) : 394 - 399
  • [43] Substrate-Independent Cupric Phosphate Nanoflower-Mineralized Superhydrophilic Membranes for Diverse Oil-Water Separation
    Sun, Kai
    Li, Sinuo
    Yu, Tianlu
    Wang, Zhecun
    ACS APPLIED NANO MATERIALS, 2023, 6 (18) : 16815 - 16825
  • [44] Fabrication and characterization of superhydrophilic graphene-based electrospun membranes for efficient oil-water separation
    Francis, Lijo
    Mohammed, Shabin
    Hashaikeh, Raed
    Hilal, Nidal
    JOURNAL OF WATER PROCESS ENGINEERING, 2023, 54
  • [45] Superhydrophobic sodium alginate/cellulose aerogel for dye adsorption and oil-water separation
    Li, Huimin
    Huang, Jingyi
    Shen, Shen
    Meng, Chaoran
    Wang, Hongbo
    Fu, Jiajia
    CELLULOSE, 2023, 30 (11) : 7157 - 7175
  • [46] Novel superhydrophilic nanofiber membranes with high flux and durability enable multifunctional oil-water separation
    Dou, Anqi
    Cao, Ning
    Wang, Yan
    Wu, Liangyu
    Sui, Yushu
    Liu, Yixuan
    Tong, Xin
    Chen, Ning
    Chen, Dongru
    Miao, Qiuyu
    Zhu, Zhihao
    Guo, Xiaorui
    Tang, Zhonghua
    Pang, Jinhui
    SEPARATION AND PURIFICATION TECHNOLOGY, 2025, 364
  • [47] Membrane surface engineering with hyperbranched polylysine for effective oil-water emulsion separation
    Xie, Tian
    Zhang, Yuanyuan
    Zhang, Xing
    Huang, Yu-Xi
    JOURNAL OF MEMBRANE SCIENCE, 2025, 723
  • [48] Stabilized superhydrophobic composite membranes prepared by electrospinning for oil-water separation
    Wang, Xiaohui
    Li, Xinmei
    POLYMERS FOR ADVANCED TECHNOLOGIES, 2024, 35 (03)
  • [49] Preparation and oil-water emulsion separation performance of amidoximated polyacrylonitrile nanofiber membrane
    Wang Y.
    Zhou M.
    Jiang Y.
    Chen J.
    Li Y.
    Fangzhi Xuebao/Journal of Textile Research, 2023, 44 (07): : 42 - 49
  • [50] Superhydrophilic and underwater superoleophobic nanofibrous membrane with hierarchical structured skin for effective oil-in-water emulsion separation
    Ge, Jianlong
    Zhang, Jichao
    Wang, Fei
    Li, Zhaoling
    Yu, Jianyong
    Ding, Bin
    JOURNAL OF MATERIALS CHEMISTRY A, 2017, 5 (02) : 497 - 502