Preparation of superhydrophilic sodium alginate/chitosan-Ag composite membranes with antibacterial activity for effective oil-water emulsion separation

被引:11
|
作者
Li, Shudi [1 ,3 ,4 ]
Lu, Wanyu [1 ]
Tang, Qijin [1 ]
Xiao, Qian [1 ]
Kang, Yixin [1 ]
Hu, Lingye [5 ]
Huang, Yong [6 ]
Peng, Chao [2 ]
Yang, Hao [1 ]
机构
[1] Wuhan Inst Technol, Sch Environm Ecol & Biol Engn, Key Lab Green Chem Proc, Minist Educ, Wuhan 430205, Hubei, Peoples R China
[2] China Univ Geosci, Fac Engn, Wuhan 430074, Hubei, Peoples R China
[3] Chinese Acad Sci, Inst Intelligent Machines, Hefei Inst Phys Sci, Hefei 230031, Peoples R China
[4] Univ Sci & Technol China, Sci Isl Branch, Grad Sch, Hefei 230009, Peoples R China
[5] Univ Sydney, Fac Engn, Sydney, NSW 2008, Australia
[6] Hebei North Univ, Coll Lab Med, Key Lab Biomed Mat Zhangjiakou, Zhangjiakou 075000, Peoples R China
基金
中国国家自然科学基金;
关键词
Superhydrophilic; Sodium alginate; Silver; Emulsion separation; Antibacterial activity; Biofilm; OIL/WATER SEPARATION; FACILE FABRICATION; EFFICIENT; NANOPARTICLES; ROUTE; MESH;
D O I
10.1016/j.ces.2023.119547
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Oily wastewater as one of water pollutions has always been a hot issue in the field of chemical engineering and environment protection, and it is still challenge to separate oil water mixture effectively with low energy consumption. Polymer membranes with superhydrophilic and underwater superoleophobic properties are perfect substances for oil-water separation owning to their high separation efficiency, oil anti-adhesion and energy saving. However, these membranes are easily contaminated by microorganisms, leading to biofilms on the surfaces, and reducing their separation flux and efficiency. In order to solve the problems, sodium alginate/ chitosan-Ag composite were successfully coated on commercial nylon membranes by self-assembly method, and the effects of the Ag on separation performance and biological activity of the membranes were investigated in detail. Under the optimized condition, the membrane can effectively separate oil-in-water emulsions containing anionic, cationic or non-ionic surfactants, with a maximum separation efficiency of 99.73%. More importantly, the inhibition ratios of the membrane could reach 95.42% and 98.05% against E. coli and S. aureus, respectively, and thus inhibits the formation of S. aureus biofilm, and maintain a high relative flux after being contaminated by S. aureus. The simple preparation process and incredible emulsion separation performance with antibacterial activity of composite membranes will provide great prospects for potential industrial applications.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Solar-driven pH-responsive oil-water separation membranes for effective oil-water emulsion separation
    Li, Ting-Ting
    Jia, Mengdan
    Li, Shuxia
    Zhang, Ying
    Wang, Xiaomeng
    Chu, Sheng
    Shiu, Bing-Chiuan
    Lou, Ching-Wen
    Lin, Jia-Horng
    NEW JOURNAL OF CHEMISTRY, 2024, 48 (21) : 9549 - 9558
  • [2] An effective strategy on the preparation of the superhydrophobic electrospun nanoparticles/PVDF composite membranes for the oil-water separation
    Lin, Bo
    Li, Zeng-Tian
    Jiang, Peng
    Wang, Hua-Ying
    Wu, Ying-Xuan
    He, Fu-An
    Wu, Hui-Jun
    SURFACE TOPOGRAPHY-METROLOGY AND PROPERTIES, 2020, 8 (02)
  • [3] Preparation of Superhydrophilic and Oleophobic Materials and Their Oil-Water Separation Properties
    Li, Xiaojian
    Zhang, Haijun
    Li, Saisai
    Zhang, Jun
    Jia, Quanli
    Zhang, Shaowei
    PROGRESS IN CHEMISTRY, 2020, 32 (06) : 851 - 860
  • [4] Facile fabrication of multifunctional superhydrophilic composite membranes for efficient oil-in-water emulsion separation
    Yu, Fan
    Liu, Riri
    Chen, Lianxin
    Yuan, Weishuang
    Chen, Qin
    Fang, Shengqiong
    Lin, Jiuyang
    SEPARATION AND PURIFICATION TECHNOLOGY, 2025, 356
  • [5] Recent Progress in Superhydrophilic Carbon-Based Composite Membranes for Oil/Water Emulsion Separation
    Gu, Jincui
    Ji, Lingtong
    Xiao, Peng
    Zhang, Chang
    Li, Jian
    Yan, Luke
    Chen, Tao
    ACS APPLIED MATERIALS & INTERFACES, 2021, 13 (31) : 36679 - 36696
  • [6] Biodegradable electrospinning superhydrophilic nanofiber membranes for ultrafast oil-water separation
    Cheng, Xiquan
    Li, Tongyu
    Yan, Linlin
    Jiao, Yang
    Zhang, Yingjie
    Wang, Kai
    Cheng, Zhongjun
    Ma, Jun
    Shao, Lu
    SCIENCE ADVANCES, 2023, 9 (34)
  • [7] Effective preparation of superhydrophilic-underwater superoleophobic nanoparticles/polymeric sponges for oil-water separation
    Lin, Bo
    He, Wen-Xu
    Jiang, Li-Wang
    Li, Zeng-Tian
    Wang, Hua-Ying
    Wu, Ying-Xuan
    He, Fu-An
    Wu, Hui-Jun
    SURFACE TOPOGRAPHY-METROLOGY AND PROPERTIES, 2020, 8 (04)
  • [8] Aminated Silica Modified Polyamide Superhydrophilic Membrane for Oil-water Emulsion Separation
    Ma, Wenxiao
    Zhang, Haoran
    Chen, Guie
    CHEMISTRY LETTERS, 2023, 52 (06) : 416 - 419
  • [9] Preparation of Hydrophobic PET Track-Etched Membranes for Separation of Oil-Water Emulsion
    Korolkov, Ilya, V
    Narmukhamedova, Asiya R.
    Melnikova, Galina B.
    Muslimova, Indira B.
    Yeszhanov, Arman B.
    Zhatkanbayeva, Zh K.
    Chizhik, Sergei A.
    Zdorovets, Maxim, V
    MEMBRANES, 2021, 11 (08)
  • [10] Superhydrophilic PANI/Ag/TA@PVDF Composite Membrane with Antifouling Property for Oil-Water Separation
    Wu, Zhenmin
    He, Jie
    Zhao, Guoyu
    Tang, Xiaoyan
    Li, Junqing
    Chen, Wenhang
    Li, Ruiqi
    LANGMUIR, 2024, 40 (21) : 11329 - 11339