A stabilized Crank-Nicolson virtual element method for the unsteady Navier-Stokes problems with high Reynolds number

被引:0
作者
Li, Yang [1 ]
Bai, Yanhong [2 ]
Feng, Minfu [2 ]
机构
[1] Changzhi Univ, Dept Math, Changzhi 046000, Peoples R China
[2] Sichuan Univ, Coll Math, Chengdu 610065, Peoples R China
关键词
Navier-Stokes problems; Virtual element methods; Crank-Nicolson scheme; Stabilizations; 2ND-ORDER ELLIPTIC PROBLEMS; SUPG STABILIZATION; GALERKIN; FORMULATION; EQUATIONS;
D O I
10.1007/s11075-023-01685-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper studies a stabilized virtual element method for the unsteady Navier-Stokes problems on polygonal meshes. Using "equal-order" virtual elements in space and the Crank-Nicolson scheme in time, we give a fully discrete formula. By introducing the local-projection type stabilizations, the method can not only circumvent the discrete inf-sup condition but also control spurious oscillations caused by high Reynolds numbers. Stability and error estimates for velocity and pressure are analyzed. Particularly, error estimates are derived in which the constants are independent of the negative powers of the viscosity. Several numerical experiments are simulated to support the theoretical results.
引用
收藏
页码:1779 / 1817
页数:39
相关论文
共 44 条
[1]  
Adak D, 2021, MATH COMPUT SCI, V15, P135, DOI 10.1007/s11786-020-00473-1
[2]   Equivalent projectors for virtual element methods [J].
Ahmad, B. ;
Alsaedi, A. ;
Brezzi, F. ;
Marini, L. D. ;
Russo, A. .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2013, 66 (03) :376-391
[3]   A STREAM VIRTUAL ELEMENT FORMULATION OF THE STOKES PROBLEM ON POLYGONAL MESHES [J].
Antonietti, P. F. ;
da Veiga, L. Beirao ;
Mora, D. ;
Verani, M. .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2014, 52 (01) :386-404
[4]   Local Projection FEM Stabilization for the Time-Dependent Incompressible Navier-Stokes Problem [J].
Arndt, Daniel ;
Dallmann, Helene ;
Lube, Gert .
NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2015, 31 (04) :1224-1250
[5]   A finite element pressure gradient stabilization for the Stokes equations based on local projections [J].
Becker, R ;
Braack, M .
CALCOLO, 2001, 38 (04) :173-199
[6]   Order preserving SUPG stabilization for the virtual element formulation of advection-diffusion problems [J].
Benedetto, M. F. ;
Berrone, S. ;
Borio, A. ;
Pieraccini, S. ;
Scialo, S. .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2016, 311 :18-40
[7]   SUPG stabilization for the nonconforming virtual element method for advection-diffusion-reaction equations [J].
Berrone, S. ;
Borio, A. ;
Manzini, G. .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2018, 340 :500-529
[8]  
Brenner S. C., 2008, Texts in Applied Mathematics, DOI DOI 10.1007/978-0-387-75934-0
[9]   MIMETIC FINITE DIFFERENCES FOR ELLIPTIC PROBLEMS [J].
Brezzi, Franco ;
Buffa, Annalisa ;
Lipnikov, Konstantin .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2009, 43 (02) :277-295
[10]   STREAMLINE UPWIND PETROV-GALERKIN FORMULATIONS FOR CONVECTION DOMINATED FLOWS WITH PARTICULAR EMPHASIS ON THE INCOMPRESSIBLE NAVIER-STOKES EQUATIONS [J].
BROOKS, AN ;
HUGHES, TJR .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1982, 32 (1-3) :199-259