Non-thermal plasma-assisted ammonia production: A review

被引:76
作者
Zhang, Jun [1 ]
Li, Xiaotian [1 ]
Zheng, Jili [2 ]
Du, Miao [3 ]
Wu, Xuehong [1 ]
Song, Jun [1 ]
Cheng, Chuanxiao [1 ]
Li, Tao [1 ]
Yang, Wei [4 ]
机构
[1] Zhengzhou Univ Light Ind, Coll Energy & Power Engn, Zhengzhou 450002, Henan, Peoples R China
[2] Chongqing Univ, Inst Engn Thermophys, Chongqing 400030, Peoples R China
[3] Zhengzhou Univ Light lndustry, Coll Mat & Chem Engn, Zhengzhou 450002, Peoples R China
[4] Sichuan Univ, Coll Water Resource & Hydropower, Chengdu 610065, Sichuan, Peoples R China
关键词
Ammonia synthesis; Non -thermal plasmas; Evaluation index; DIELECTRIC-BARRIER-DISCHARGE; SELECTIVE CATALYTIC-REDUCTION; ATMOSPHERIC-PRESSURE PLASMA; NITROGEN-FIXATION; HETEROGENEOUS CATALYSIS; RUTHENIUM CATALYSTS; MICROWAVE-DISCHARGE; METHANE CONVERSION; CARBON NITRIDE; N VACANCIES;
D O I
10.1016/j.enconman.2023.117482
中图分类号
O414.1 [热力学];
学科分类号
摘要
As a hydrogen carrier molecule, ammonia is a clean, sustainable fuel source and efficient energy storage medium that has been extensively investigated. Currently, the industrial method for ammonia synthesis is the HaberBosch process, which requires large amounts of fossil fuels, high temperature and pressure, and significant capital investment. Plasma technology is a promising alternative method for ammonia synthesis, and nonthermal plasma has been widely used due to the high selectivity in chemical reactions, mild reaction conditions, and no need for quenching. In this review, we present an extensive and in-depth examination of the advancements in non-thermal plasma-assisted ammonia synthesis under conditions characterized by low temperature and low pressure. It encompasses various aspects, including plasma pretreatment of ammonia synthesis catalysts and plasma-activated air-assisted ammonia synthesis, as well as the analysis of the influence of different hydrogen sources and plasma sources. Subsequently, an evaluation framework for non-thermal plasmaassisted ammonia synthesis is proposed, followed by a comparative analysis of different ammonia synthesis methods, elucidating the auxiliary role of non-thermal plasma in the ammonia synthesis process. Finally, we conclude with an outlook and recommendations for non-thermal plasma-assisted ammonia production.
引用
收藏
页数:21
相关论文
共 197 条
[1]   Reactive spark plasma sintering of NiAl intermetallics: A comparative study [J].
Abedi, Mohammad ;
Kuskov, Kirill ;
Moskovskikh, Dmitry ;
Zakharova, Elena, V ;
Belov, Dmitry ;
Mukasyan, Alexander .
INTERMETALLICS, 2023, 152
[2]   Electroreduction of N2 to Ammonia at Ambient Conditions on Mononitrides of Zr, Nb, Cr, and V: A DFT Guide for Experiments [J].
Abghoui, Younes ;
Garden, Anna L. ;
Howat, Jakob G. ;
Vegge, Tejs ;
Skulason, Egill .
ACS CATALYSIS, 2016, 6 (02) :635-646
[3]   The 2022 Plasma Roadmap: low temperature plasma science and technology [J].
Adamovich, I ;
Agarwal, S. ;
Ahedo, E. ;
Alves, L. L. ;
Baalrud, S. ;
Babaeva, N. ;
Bogaerts, A. ;
Bourdon, A. ;
Bruggeman, P. J. ;
Canal, C. ;
Choi, E. H. ;
Coulombe, S. ;
Donko, Z. ;
Graves, D. B. ;
Hamaguchi, S. ;
Hegemann, D. ;
Hori, M. ;
Kim, H-H ;
Kroesen, G. M. W. ;
Kushner, M. J. ;
Laricchiuta, A. ;
Li, X. ;
Magin, T. E. ;
Thagard, S. Mededovic ;
Miller, V ;
Murphy, A. B. ;
Oehrlein, G. S. ;
Puac, N. ;
Sankaran, R. M. ;
Samukawa, S. ;
Shiratani, M. ;
Simek, M. ;
Tarasenko, N. ;
Terashima, K. ;
Thomas, E., Jr. ;
Trieschmann, J. ;
Tsikata, S. ;
Turner, M. M. ;
van der Walt, I. J. ;
van de Sanden, M. C. M. ;
von Woedtke, T. .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2022, 55 (37)
[4]   Chemical looping combustion of solid fuels [J].
Adanez, J. ;
Abad, A. ;
Mendiara, T. ;
Gayan, P. ;
de Diego, L. F. ;
Garcia-Labiano, F. .
PROGRESS IN ENERGY AND COMBUSTION SCIENCE, 2018, 65 :6-66
[5]   Progress in Chemical-Looping Combustion and Reforming technologies [J].
Adanez, Juan ;
Abad, Alberto ;
Garcia-Labiano, Francisco ;
Gayan, Pilar ;
de Diego, Luis F. .
PROGRESS IN ENERGY AND COMBUSTION SCIENCE, 2012, 38 (02) :215-282
[6]   Remarkable catalysis of a wool-like copper electrode for NH3 synthesis from N2 and H2 in non-thermal atmospheric plasma [J].
Aihara, Keigo ;
Akiyama, Mao ;
Deguchi, Takashi ;
Tanaka, Masashi ;
Hagiwara, Rina ;
Iwamoto, Masakazu .
CHEMICAL COMMUNICATIONS, 2016, 52 (93) :13560-13563
[7]   Role of alkali promoter in ammonia synthesis over ruthenium catalysts-Effect on reaction mechanism [J].
Aika, Ken-ichi .
CATALYSIS TODAY, 2017, 286 :14-20
[8]   Process Intensification in Ammonia Synthesis Using Novel Coassembled Supported Microporous Catalysts Promoted by Nonthermal Plasma [J].
Akay, Galip ;
Zhang, Kui .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2017, 56 (02) :457-468
[9]   Nanostructured photoelectrochemical solar cell for nitrogen reduction using plasmon-enhanced black silicon [J].
Ali, Muataz ;
Zhou, Fengling ;
Chen, Kun ;
Kotzur, Christopher ;
Xiao, Changlong ;
Bourgeois, Laure ;
Zhang, Xinyi ;
MacFarlane, Douglas R. .
NATURE COMMUNICATIONS, 2016, 7
[10]   Environmental impact assessment of plasma-assisted and conventional ammonia synthesis routes [J].
Anastasopoulou, Aikaterini ;
Keijzer, Robin ;
Patil, Bhaskar ;
Lang, Juergen ;
Rooij, Gerard ;
Hessel, Volker .
JOURNAL OF INDUSTRIAL ECOLOGY, 2020, 24 (05) :1171-1185