Strategically managing learning during perceptual decision making

被引:8
作者
Masis, Javier [1 ,2 ,4 ]
Chapman, Travis [2 ]
Rhee, Juliana Y. [1 ,2 ,5 ]
Cox, David D. [1 ,2 ,6 ]
Saxe, Andrew M. [3 ,7 ,8 ]
机构
[1] Harvard Univ, Dept Mol & Cellular Biol, Cambridge, MA 02138 USA
[2] Harvard Univ, Ctr Brain Sci, Cambridge, MA 02138 USA
[3] Univ Oxford, Dept Expt Psychol, Oxford, England
[4] Princeton Univ, Princeton Neurosci Inst, INSERM, Princeton, NJ USA
[5] Rockefeller Univ, New York, NY USA
[6] MIT IBM Watson Al Lab, Cambridge, MA USA
[7] UCL, Gatsby Unit, London, England
[8] UCL, Sainsbury Wellcome Ctr, London, England
基金
英国惠康基金;
关键词
learning; decision making; neural networks; behavior; cognitive control; inter-temporal choice; Rat; SPEED-ACCURACY TRADEOFF; REACTION-TIME DISTRIBUTIONS; COMPUTATIONAL RATIONALITY; REWARD RATE; MODEL; CHOICE; DISCRIMINATION; ACCOUNT; CORTEX; OPTIMALITY;
D O I
10.7554/eLife.64978
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Making optimal decisions in the face of noise requires balancing short-term speed and accuracy. But a theory of optimality should account for the fact that short-term speed can influence long-term accuracy through learning. Here, we demonstrate that long-term learning is an important dynamical dimension of the speed-accuracy trade-off. We study learning trajectories in rats and formally characterize these dynamics in a theory expressed as both a recurrent neural network and an analytical extension of the drift-diffusion model that learns over time. The model reveals that choosing suboptimal response times to learn faster sacrifices immediate reward, but can lead to greater total reward. We empirically verify predictions of the theory, including a relationship between stimulus exposure and learning speed, and a modulation of reaction time by future learning prospects. We find that rats' strategies approximately maximize total reward over the full learning epoch, suggesting cognitive control over the learning process.
引用
收藏
页数:43
相关论文
共 126 条
[1]   Maintaining accuracy at the expense of speed: Stimulus similarity defines odor discrimination time in mice [J].
Abraham, NM ;
Spors, H ;
Carleton, A ;
Margrie, TW ;
Kuner, T ;
Schaefer, AT .
NEURON, 2004, 44 (05) :865-876
[2]   Posterior parietal cortex represents sensory history and mediates its effects on behaviour [J].
Akrami, Athena ;
Kopec, Charles D. ;
Diamond, Mathew E. ;
Brody, Carlos D. .
NATURE, 2018, 554 (7692) :368-+
[3]  
[Anonymous], 2004, Cognitive Psychology: Key Readings
[4]   Acquisition of decision making criteria: reward rate ultimately beats accuracy [J].
Balci, Fuat ;
Simen, Patrick ;
Niyogi, Ritwik ;
Saxe, Andrew ;
Hughes, Jessica A. ;
Holmes, Philip ;
Cohen, Jonathan D. .
ATTENTION PERCEPTION & PSYCHOPHYSICS, 2011, 73 (02) :640-657
[5]   Probabilistic Population Codes for Bayesian Decision Making [J].
Beck, Jeffrey M. ;
Ma, Wei Ji ;
Kiani, Roozbeh ;
Hanks, Tim ;
Churchland, Anne K. ;
Roitman, Jamie ;
Shadlen, Michael N. ;
Latham, Peter E. ;
Pouget, Alexandre .
NEURON, 2008, 60 (06) :1142-1152
[6]   Perceptual learning as improved probabilistic inference in early sensory areas [J].
Bejjanki, Vikranth R. ;
Beck, Jeffrey M. ;
Lu, Zhong-Lin ;
Pouget, Alexandre .
NATURE NEUROSCIENCE, 2011, 14 (05) :642-U139
[7]   Functional specialization in rat occipital and temporal visual cortex [J].
Ben Vermaercke ;
Gerich, Florian J. ;
Ytebrouck, Ellen ;
Arckens, Lutgarde ;
Op de Beeck, Hans P. ;
Van den Bergh, Gert .
JOURNAL OF NEUROPHYSIOLOGY, 2014, 112 (08) :1963-1983
[8]   Resource-rational decision making [J].
Bhui, Rahul ;
Lai, Lucy ;
Gershman, Samuel J. .
CURRENT OPINION IN BEHAVIORAL SCIENCES, 2021, 41 :15-21
[9]   Reaction time responding in rats [J].
Blokland, A .
NEUROSCIENCE AND BIOBEHAVIORAL REVIEWS, 1998, 22 (06) :847-864
[10]   The physics of optimal decision making: A formal analysis of models of performance in two-alternative forced-choice tasks [J].
Bogacz, Rafal ;
Brown, Eric ;
Moehlis, Jeff ;
Holmes, Philip ;
Cohen, Jonathan D. .
PSYCHOLOGICAL REVIEW, 2006, 113 (04) :700-765