SGBoost: An Efficient and Privacy-Preserving Vertical Federated Tree Boosting Framework

被引:8
|
作者
Zhao, Jiaqi [1 ]
Zhu, Hui [1 ]
Xu, Wei [1 ]
Wang, Fengwei [1 ]
Lu, Rongxing [2 ]
Li, Hui [1 ]
机构
[1] Xidian Univ, Sch Cyber Engn, Xian 710126, Shaanxi, Peoples R China
[2] Univ New Brunswick, Fac Comp Sci, Fredericton, NB E3B 5A3, Canada
基金
中国国家自然科学基金;
关键词
Vertical federated learning; tree boosting; privacy-preserving; efficiency; QUERY;
D O I
10.1109/TIFS.2022.3232955
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Aiming at balancing data privacy and availability, Google introduces the concept of federated learning, which can construct global machine learning models over multiple participants while keeping their raw data localized. However, the exchanged parameters in traditional federated learning may still reveal the data information. Meanwhile, the training data are usually partitioned vertically in real-world scenes, which causes difficulties in model construction. To tackle these problems, in this paper, we propose an efficient and privacy-preserving vertical federated tree boosting framework, namely SGBoost, where multiple participants can collaboratively perform model training and query without staying online all the time. Specifically, we first design secure bucket sharing and best split finding algorithms, with which the global tree model can be constructed over vertically partitioned data; meanwhile, the privacy of training data can be well guaranteed. Then, we design an oblivious query algorithm to utilize the trained model without leaking any query data or results. Moreover, SGBoost does not require multi-round interactions between participants, significantly improving the system efficiency. Detailed security analysis shows that SGBoost can well guarantee the privacy of raw data, weights, buckets, and split information. Extensive experiments demonstrate that SGBoost can achieve high accuracy comparable to centralized training and efficient performance.
引用
收藏
页码:1022 / 1036
页数:15
相关论文
共 50 条
  • [41] Efficient Privacy-Preserving Federated Learning Against Inference Attacks for IoT
    Miao, Yifeng
    Chen, Siguang
    2023 IEEE WIRELESS COMMUNICATIONS AND NETWORKING CONFERENCE, WCNC, 2023,
  • [42] SAEV: Secure Aggregation and Efficient Verification for Privacy-Preserving Federated Learning
    Wang, Junkai
    Wang, Rong
    Xiong, Ling
    Xiong, Neal
    Liu, Zhicai
    IEEE INTERNET OF THINGS JOURNAL, 2024, 11 (24): : 39681 - 39696
  • [43] Privacy-preserving and communication-efficient federated learning in Internet of Things
    Fang, Chen
    Guo, Yuanbo
    Hu, Yongjin
    Ma, Bowen
    Feng, Li
    Yin, Anqi
    COMPUTERS & SECURITY, 2021, 103 (103)
  • [44] An Efficient and Dynamic Privacy-Preserving Federated Learning System for Edge Computing
    Tang, Xinyu
    Guo, Cheng
    Choo, Kim-Kwang Raymond
    Liu, Yining
    IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2024, 19 : 207 - 220
  • [45] Privacy-Preserving Vertical Federated Learning With Tensor Decomposition for Data Missing Features
    Liao, Tianchi
    Fu, Lele
    Zhang, Lei
    Yang, Lei
    Chen, Chuan
    Ng, Michael K.
    Huang, Huawei
    Zheng, Zibin
    IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2025, 20 : 3445 - 3460
  • [46] MASK: Efficient and privacy-preserving m-tree based biometric identification over cloud
    Yang, Xiaopeng
    Zhu, Hui
    Wang, Fengwei
    Zhang, Songnian
    Lu, Rongxing
    Li, Hui
    PEER-TO-PEER NETWORKING AND APPLICATIONS, 2021, 14 (04) : 2171 - 2186
  • [47] POSTER: Privacy-preserving Federated Active Learning
    Kurniawan, Hendra
    Mambo, Masahiro
    SCIENCE OF CYBER SECURITY, SCISEC 2022 WORKSHOPS, 2022, 1680 : 223 - 226
  • [48] PPFLV: privacy-preserving federated learning with verifiability
    Zhou, Qun
    Shen, Wenting
    CLUSTER COMPUTING-THE JOURNAL OF NETWORKS SOFTWARE TOOLS AND APPLICATIONS, 2024, 27 (09): : 12727 - 12743
  • [49] Privacy-preserving Decentralized Federated Deep Learning
    Zhu, Xudong
    Li, Hui
    PROCEEDINGS OF ACM TURING AWARD CELEBRATION CONFERENCE, ACM TURC 2021, 2021, : 33 - 38
  • [50] GAIN: Decentralized Privacy-Preserving Federated Learning
    Jiang, Changsong
    Xu, Chunxiang
    Cao, Chenchen
    Chen, Kefei
    JOURNAL OF INFORMATION SECURITY AND APPLICATIONS, 2023, 78