SGBoost: An Efficient and Privacy-Preserving Vertical Federated Tree Boosting Framework

被引:8
|
作者
Zhao, Jiaqi [1 ]
Zhu, Hui [1 ]
Xu, Wei [1 ]
Wang, Fengwei [1 ]
Lu, Rongxing [2 ]
Li, Hui [1 ]
机构
[1] Xidian Univ, Sch Cyber Engn, Xian 710126, Shaanxi, Peoples R China
[2] Univ New Brunswick, Fac Comp Sci, Fredericton, NB E3B 5A3, Canada
基金
中国国家自然科学基金;
关键词
Vertical federated learning; tree boosting; privacy-preserving; efficiency; QUERY;
D O I
10.1109/TIFS.2022.3232955
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Aiming at balancing data privacy and availability, Google introduces the concept of federated learning, which can construct global machine learning models over multiple participants while keeping their raw data localized. However, the exchanged parameters in traditional federated learning may still reveal the data information. Meanwhile, the training data are usually partitioned vertically in real-world scenes, which causes difficulties in model construction. To tackle these problems, in this paper, we propose an efficient and privacy-preserving vertical federated tree boosting framework, namely SGBoost, where multiple participants can collaboratively perform model training and query without staying online all the time. Specifically, we first design secure bucket sharing and best split finding algorithms, with which the global tree model can be constructed over vertically partitioned data; meanwhile, the privacy of training data can be well guaranteed. Then, we design an oblivious query algorithm to utilize the trained model without leaking any query data or results. Moreover, SGBoost does not require multi-round interactions between participants, significantly improving the system efficiency. Detailed security analysis shows that SGBoost can well guarantee the privacy of raw data, weights, buckets, and split information. Extensive experiments demonstrate that SGBoost can achieve high accuracy comparable to centralized training and efficient performance.
引用
收藏
页码:1022 / 1036
页数:15
相关论文
共 50 条
  • [1] VFLR: An Efficient and Privacy-Preserving Vertical Federated Framework for Logistic Regression
    Zhao, Jiaqi
    Zhu, Hui
    Wang, Fengwei
    Lu, Rongxing
    Wang, Ermei
    Li, Linfeng
    Li, Hui
    IEEE TRANSACTIONS ON CLOUD COMPUTING, 2023, 11 (04) : 3326 - 3340
  • [2] ELXGB: An Efficient and Privacy-Preserving XGBoost for Vertical Federated Learning
    Xu, Wei
    Zhu, Hui
    Zheng, Yandong
    Wang, Fengwei
    Zhao, Jiaqi
    Liu, Zhe
    Li, Hui
    IEEE TRANSACTIONS ON SERVICES COMPUTING, 2024, 17 (03) : 878 - 892
  • [3] A Privacy-preserving Data Alignment Framework for Vertical Federated Learning
    Gao, Ying
    Xie, Yuxin
    Deng, Huanghao
    Zhu, Zukun
    Zhang, Yiyu
    Dianzi Yu Xinxi Xuebao/Journal of Electronics and Information Technology, 2024, 46 (08): : 3419 - 3427
  • [4] Secure Dataset Condensation for Privacy-Preserving and Efficient Vertical Federated Learning
    Gao, Dashan
    Wu, Canhui
    Zhang, Xiaojin
    Yao, Xin
    Yang, Qiang
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES: RESEARCH TRACK, PT I, ECML PKDD 2024, 2024, 14941 : 212 - 229
  • [5] An Efficient Federated Learning Framework for Privacy-Preserving Data Aggregation in IoT
    Shi, Rongquan
    Wei, Lifei
    Zhang, Lei
    2023 20TH ANNUAL INTERNATIONAL CONFERENCE ON PRIVACY, SECURITY AND TRUST, PST, 2023, : 385 - 391
  • [6] EzBoost: Fast And Secure Vertical Federated Tree Boosting Framework via EzPC
    Gao, Xinwen
    Fu, Shaojing
    Liu, Lin
    Luo, Yuchuan
    Yang, Luming
    2023 IEEE 22ND INTERNATIONAL CONFERENCE ON TRUST, SECURITY AND PRIVACY IN COMPUTING AND COMMUNICATIONS, TRUSTCOM, BIGDATASE, CSE, EUC, ISCI 2023, 2024, : 28 - 37
  • [7] Efficient and Privacy-Preserving Feature Importance-Based Vertical Federated Learning
    Li, Anran
    Huang, Jiahui
    Jia, Ju
    Peng, Hongyi
    Zhang, Lan
    Tuan, Luu Anh
    Yu, Han
    Li, Xiang-Yang
    IEEE TRANSACTIONS ON MOBILE COMPUTING, 2024, 23 (06) : 7238 - 7255
  • [8] PVD-FL: A Privacy-Preserving and Verifiable Decentralized Federated Learning Framework
    Zhao, Jiaqi
    Zhu, Hui
    Wang, Fengwei
    Lu, Rongxing
    Liu, Zhe
    Li, Hui
    IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2022, 17 : 2059 - 2073
  • [9] Efficient and Privacy-Preserving Byzantine-robust Federated Learning
    Luan, Shijie
    Lu, Xiang
    Zhang, Zhuangzhuang
    Chang, Guangsheng
    Guo, Yunchuan
    IEEE CONFERENCE ON GLOBAL COMMUNICATIONS, GLOBECOM, 2023, : 2202 - 2208
  • [10] A efficient and robust privacy-preserving framework for cross-device federated learning
    Du, Weidong
    Li, Min
    Wu, Liqiang
    Han, Yiliang
    Zhou, Tanping
    Yang, Xiaoyuan
    COMPLEX & INTELLIGENT SYSTEMS, 2023, 9 (05) : 4923 - 4937