Electrolyte for High-Energy- and Power-Density Zinc Batteries and Ion Capacitors

被引:36
作者
Chen, Peng [1 ]
Sun, Xiaohan [1 ]
Pietsch, Tobias [1 ]
Plietker, Bernd [1 ]
Brunner, Eike [1 ]
Ruck, Michael [2 ]
机构
[1] Tech Univ Dresden, Fac Chem & Food Chem, D-01062 Dresden, Germany
[2] Max Planck Inst Chem Phys Solids, D-01187 Dresden, Germany
关键词
betaine complexes; capacity retention; electrolytes; zinc batteries; zinc-ion capacitors; METAL ANODES;
D O I
10.1002/adma.202207131
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Growth of dendrites, limited coulombic efficiency (CE), and the lack of high-voltage electrolytes restrict the commercialization of zinc batteries and capacitors. These issues are resolved by a new electrolyte, based on the zinc(II)-betaine complex [Zn(bet)(2)][NTf2](2). Solutions in acetonitrile (AN) avoid dendrite formation. A Zn||Zn cell operates stably over 10 110 h (5055 cycles) at 0.2 mA cm(-2) or 110 h at 50 mA cm(-2), and has an area capacity of 113 mAh cm(-2) at 80% depth of discharge. A zinc-graphite battery performs at 2.6 V with a midpoint discharge-voltage of 2.4 V. The capacity-retention at 3 A g(-1) (150 C) is 97% after 1000 cycles and 68% after 10 000 cycles. The charge/discharge time is about 24 s at 3.0 A g(-1) with an energy density of 49 Wh kg(-1) at a power density of 6864 W kg(-1) based on the cathode. A zinc||activated-carbon ion-capacitor (coin cell) exhibits an operating-voltage window of 2.5 V, an energy density of 96 Wh kg(-1) with a power density of 610 W kg(-1) at 0.5 A g(-1). At 12 A g(-1), 36 Wh kg(-1), and 13 600 W kg(-1) are achieved with 90% capacity-retention and an average CE of 96% over 10 000 cycles. Quantum-chemical methods and vibrational spectroscopy reveal [Zn(bet)(2)(AN)(2)](2+) as the dominant complex in the electrolyte.
引用
收藏
页数:13
相关论文
共 65 条
[11]  
Hao J., 2022, ADV MATER, V34
[12]   Toward High-Performance Hybrid Zn-Based Batteries via Deeply Understanding Their Mechanism and Using Electrolyte Additive [J].
Hao, Junnan ;
Long, Jun ;
Li, Bo ;
Li, Xiaolong ;
Zhang, Shilin ;
Yang, Fuhua ;
Zeng, Xiaohui ;
Yang, Zhanhong ;
Pang, Wei Kong ;
Guo, Zaiping .
ADVANCED FUNCTIONAL MATERIALS, 2019, 29 (34)
[13]   Highly stable Zn metal anodes enabled by atomic layer deposited Al2O3 coating for aqueous zinc-ion batteries [J].
He, Huibing ;
Tong, Huan ;
Song, Xueyang ;
Song, Xiping ;
Liu, Jian .
JOURNAL OF MATERIALS CHEMISTRY A, 2020, 8 (16) :7836-7846
[14]   Chemical Passivation Stabilizes Zn Anode [J].
He, Pan ;
Huang, Jiaxing .
ADVANCED MATERIALS, 2022, 34 (18)
[15]  
Hongshan H., 2006, ACTA CRYSTALLOGR E, V62, pm3291
[16]   Highly Durable Na2V6O16•1.63H2O Nanowire Cathode for Aqueous Zinc-Ion Battery [J].
Hu, Ping ;
Zhu, Ting ;
Wang, Xuanpeng ;
Wei, Xiujuan ;
Yan, Mengyu ;
Li, Jiantao ;
Luo, Wen ;
Yang, Wei ;
Zhang, Wencui ;
Zhou, Liang ;
Zhou, Zhiqiang ;
Mai, Liqiang .
NANO LETTERS, 2018, 18 (03) :1758-1763
[17]   Surface Transformation Enables a Dendrite-Free Zinc-Metal Anode in Nonaqueous Electrolyte [J].
Huang, Fanyang ;
Li, Xinpeng ;
Zhang, Yuchen ;
Jie, Yulin ;
Mu, Xulin ;
Yang, Chaoran ;
Li, Wanxia ;
Chen, Yawei ;
Liu, Yang ;
Wang, Shuai ;
Ge, Binghui ;
Cao, Ruiguo ;
Ren, Xiaodi ;
Yan, Pengfei ;
Li, Qi ;
Xu, Dongsheng ;
Jiao, Shuhong .
ADVANCED MATERIALS, 2022, 34 (34)
[18]   Polyaniline-intercalated manganese dioxide nanolayers as a high-performance cathode material for an aqueous zinc-ion battery [J].
Huang, Jianhang ;
Wang, Zhuo ;
Hou, Mengyan ;
Dong, Xiaoli ;
Liu, Yao ;
Wang, Yonggang ;
Xia, Yongyao .
NATURE COMMUNICATIONS, 2018, 9
[19]   A Self-Healing Integrated All-in-One Zinc-Ion Battery [J].
Huang, Shuo ;
Wan, Fang ;
Bi, Songshan ;
Zhu, Jiacai ;
Niu, Zhiqiang ;
Chen, Jun .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2019, 58 (13) :4313-4317
[20]   Antifreezing Hydrogel Electrolyte with Ternary Hydrogen Bonding for High-Performance Zinc-Ion Batteries [J].
Huang, Siwen ;
Hou, Lei ;
Li, Tianyu ;
Jiao, Yucong ;
Wu, Peiyi .
ADVANCED MATERIALS, 2022, 34 (14)