Benzothiadiazole-based polymer donors

被引:76
作者
Cong, Peiqing [1 ,2 ]
Wang, Zongtao [1 ,3 ]
Geng, Yanfang [1 ]
Meng, Yuhan [1 ,3 ]
Meng, Chao [1 ,2 ]
Chen, Lie [4 ]
Tang, Ailing [1 ]
Zhou, Erjun [1 ,2 ,3 ]
机构
[1] Natl Ctr Nanosci & Technol, CAS Ctr Excellence Nanosci, CAS Key Lab Nanosyst & Hierarch Fabricat, Beijing 100190, Peoples R China
[2] Univ Chinese Acad Sci, Ctr Mat Sci & Optoelect Engn, Beijing 100049, Peoples R China
[3] Zhengzhou Univ, Henan Inst Adv Technol, Zhengzhou 450003, Peoples R China
[4] Nanchang Univ, Coll Chem, Nanchang 330031, Peoples R China
基金
中国国家自然科学基金;
关键词
P-type photovoltaic polymer; Non-fullerene acceptors; Organic photovoltaic cells; Power conversion efficiency; 2; 1; 3-benzothiadiazole; ORGANIC SOLAR-CELLS; NON-FULLERENE ACCEPTOR; BANDGAP CONJUGATED POLYMER; PERYLENE-DIIMIDE ACCEPTORS; SMALL MOLECULAR ACCEPTOR; PHOTOVOLTAIC PERFORMANCE; HIGHLY EFFICIENT; NONFULLERENE ACCEPTORS; CONVERSION EFFICIENCY; RANDOM TERPOLYMERS;
D O I
10.1016/j.nanoen.2022.108017
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
As the most classic electron-accepting building block, 2,1,3-benzothiadiazole (BT) and the derived structures have achieved great success to construct photovoltaic materials, especially p-type polymers. The first major breakthrough of BT-based polymers in the field of organic photovoltaic (OPV) was made by fullerene derivatives as the electron acceptor, and the power conversion efficiency (PCE) of 11.7% achieved by PffBT4T-C9C13 is still the world record for fullerene-based OPVs. However, the limited tunability of optoelectronic properties of fullerene acceptors hindered the further development. From 2015, a new era of OPVs started with the rapid progress of non-fullerene acceptors (NFAs), which exhibits quite different properties compared to fullerene analogs. Interesting, BT-based polymer donors also set a new landmark for nonfullerene OPVs with remarkable PCEs over 19%. Thus, in this review, we will focus on discussing the structure characteristics, evolution and device development of BT-based p-type polymers. Firstly, the representative BT-based polymers that have ach-ieved milestone efficiency will be introduced. Secondly, how polymer structures affect the optoelectronic properties and photovoltaic performance will be addressed, including the absorption spectra, energy levels, crystallinity, 7C-7C stacking, miscibility with NFAs, bicontinuous network structure and stability of the blend films. Finally, we emphasize the importance of putting more research efforts into designing new BT-derived building blocks and corresponding p-type polymers, and understanding the unrevealed fundamental photoelectron con-version mechanisms.
引用
收藏
页数:28
相关论文
共 227 条
[1]   Comparing the microstructure and photovoltaic performance of 3 perylene imide acceptors with similar energy levels but different packing tendencies [J].
Adel, Rana ;
Gala, Elena ;
Alonso-Navarro, Matias J. ;
Gutierrez-Fernandez, Edgar ;
Martin, Jaime ;
Stella, Marco ;
Martinez-Ferrero, Eugenia ;
de la Pena, Alejandro ;
Harbuzaru, Alexandra ;
Mar Ramos, M. ;
Ponce Ortiz, Rocio ;
Segura, Jose L. ;
Campoy-Quiles, Mariano .
JOURNAL OF MATERIALS CHEMISTRY C, 2022, 10 (05) :1698-1710
[2]   Simple and Versatile Non-Fullerene Acceptor Based on Benzothiadiazole and Rhodanine for Organic Solar Cells [J].
Ahn, Jongho ;
Oh, Sora ;
Lee, HyunKyung ;
Lee, Sangjun ;
Song, Chang Eun ;
Lee, Hang Ken ;
Lee, Sang Kyu ;
So, Won-Wook ;
Moon, Sang-Jin ;
Lim, Eunhee ;
Shin, Won Suk ;
Lee, Jong-Cheol .
ACS APPLIED MATERIALS & INTERFACES, 2019, 11 (33) :30098-30107
[3]   The effect of irregularity from asymmetric random π-conjugated polymers on the photovoltaic performance of fullerene-free organic solar cells [J].
Aryal, Um Kanta ;
Lee, Junwoo ;
Kranthiraja, Kakaraparthi ;
Reddy, Saripally Sudhaker ;
Sree, Vijaya Gopalan ;
Park, Taiho ;
Song, Myungkwan ;
Jin, Sung-Ho .
POLYMER CHEMISTRY, 2019, 10 (32) :4407-4412
[4]  
Bagui Suman A., 2016, J PHYS CHEM C, V120, P24615, DOI DOI 10.1021/acs.jpcc.6b07778
[5]   A highly crystalline non-fullerene acceptor enabling efficient indoor organic photovoltaics with high EQE and fill factor [J].
Bai, Fujin ;
Zhang, Jianquan ;
Zeng, Anping ;
Zhao, Heng ;
Duan, Ke ;
Yu, Han ;
Cheng, Kui ;
Chai, Gaoda ;
Chen, Yuzhong ;
Liang, Jiaen ;
Ma, Wei ;
Yan, He .
JOULE, 2021, 5 (05) :1231-1245
[6]   A Random Terpolymer Donor with Similar Monomers Enables 18.28% Efficiency Binary Organic Solar Cells with Well Polymer Batch Reproducibility [J].
Bai, Hai-Rui ;
An, Qiaoshi ;
Zhi, Hong-Fu ;
Jiang, Mengyun ;
Mahmood, Asif ;
Yan, Lu ;
Liu, Ming-Qiao ;
Liu, Yan-Qiang ;
Wang, Yan ;
Wang, Jin-Liang .
ACS ENERGY LETTERS, 2022, 7 (09) :3045-3057
[7]   Research Advances on Benzotriazole-based Organic Photovoltaic Materials [J].
Bai, Yang ;
Xue, Ling-Wei ;
Wang, Hai-Qiao ;
Zhang, Zhi-Guo .
ACTA CHIMICA SINICA, 2021, 79 (07) :820-852
[8]   Diketopyrrolopyrrole (DPP)-Based Materials and Its Applications: A Review [J].
Bao, Wei Wei ;
Li, Rui ;
Dai, Zhi Cheng ;
Tang, Jian ;
Shi, Xin ;
Geng, Jie Ting ;
Deng, Zhi Feng ;
Hua, Jing .
FRONTIERS IN CHEMISTRY, 2020, 8
[9]   Reduced voltage losses yield 10% efficient fullerene free organic solar cells with >1 V open circuit voltages [J].
Baran, D. ;
Kirchartz, T. ;
Wheeler, S. ;
Dimitrov, S. ;
Abdelsamie, M. ;
Gorman, J. ;
Ashraf, R. S. ;
Holliday, S. ;
Wadsworth, A. ;
Gasparini, N. ;
Kaienburg, P. ;
Yan, H. ;
Amassian, A. ;
Brabec, C. J. ;
Durrant, J. R. ;
McCulloch, I. .
ENERGY & ENVIRONMENTAL SCIENCE, 2016, 9 (12) :3783-3793
[10]   Synthesis of 2,2′-[2,2′-(arenediyl)bis(anthra[2,3-b]thiophene-5,10-diylidene)] tetrapropanedinitriles and their performance as non-fullerene acceptors in organic photovoltaics [J].
Baranov, Denis S. ;
Krivenko, Olga L. ;
Kazantsev, Maxim S. ;
Nevostruev, Danil A. ;
Kobeleva, Elena S. ;
Zinoviev, Vladimir A. ;
Dmitriev, Alexey A. ;
Gritsan, Nina P. ;
Kulik, Leonid, V .
SYNTHETIC METALS, 2019, 255