Predicting the AC conductivity of semiconductor composition thin films using ANFIS model; an integrated experimental and theoretical approach

被引:4
作者
Mohamed, R. A. [1 ]
Atyia, H. E. [1 ]
机构
[1] Ain Shams Univ, Fac Educ, Roxy, Phys Dept, Cairo 11757, Egypt
关键词
Semiconductors; Thin films; CBH model; AC-conductivity; ANFIS model; Prediction; DIELECTRIC-PROPERTIES; NEURO-FUZZY; ELECTRICAL-PROPERTIES; A.C; CONDUCTIVITY; CHALCOGENIDE; TEMPERATURE; OPTIMIZATION; SN;
D O I
10.1088/1402-4896/ad301e
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The current research investigates the conductivity sigma AC of glassy As4Ge24Te72 thin films through a combined experimental and theoretical approach. It sheds light on the complex relationship between sigma AC , frequency, temperature, and film thickness. Analysis reveals that sigma AC follows omega r law and exhibits hopping behavior. To effectively model and predict sigma AC , an adaptive neuro-fuzzy inference system (ANFIS) is utilized. The ANFIS model successfully simulates the experimental data, showing high accuracy. Additionally, the prediction of experimentally measured values of sigma AC is processed as a testing step and provides acceptable results. That enables ANFIS to enlarge the scale and complete the missing parts in the trained datasets by predictions for unmeasured sigma AC values. The ANFIS network was built using MATLAB-R2017a. It consists of two inputs (frequency and temperature) and one output (AC conductivity). The precision is confirmed by calculating the modeling errors across the training process. The mean absolute errors MAE through the modeling process are not exceeding 10-5. This average error value demonstrates the model's effective ability. The alignment between experimental and ANFIS modeling results open up exciting possibilities for future research. By predicting the properties of the understudy material using ANFIS model, we can pave the way for more compact and efficient electrical devices.
引用
收藏
页数:14
相关论文
共 43 条
[11]   Modeling of photovoltaic characteristics of pyronine thin film/P-Si single crystal [J].
El-Barry, A. M. A. ;
Mohamed, R. A. .
MATERIALS RESEARCH EXPRESS, 2019, 6 (07)
[12]   THEORY OF AC CONDUCTION IN CHALCOGENIDE GLASSES [J].
ELLIOTT, SR .
PHILOSOPHICAL MAGAZINE, 1977, 36 (06) :1291-1304
[13]   AC CONDUCTION IN AMORPHOUS-CHALCOGENIDE AND PNICTIDE SEMICONDUCTORS [J].
ELLIOTT, SR .
ADVANCES IN PHYSICS, 1987, 36 (02) :135-218
[14]   On the temperature dependent dielectric properties, conductivity and resistivity of MIS structures at 1 MHz [J].
Eroglu, A. ;
Tataroglu, A. ;
Altindal, S. .
MICROELECTRONIC ENGINEERING, 2012, 91 :154-158
[15]   AC conductivity and dielectric parameters studies in multilayer TiO2/ZnO thin films produced via ALD technique [J].
Fouad, S. S. ;
Parditka, Bence ;
Atyia, H. E. ;
Baradacs, Eszter ;
Bekheet, A. E. ;
Erdelyi, Zoltan .
CHINESE JOURNAL OF PHYSICS, 2022, 77 :73-80
[16]   Investigation of AC conductivity, dielectric and thermodynamics properties of Se Te Pb glassy system [J].
Fouad, S. S. ;
Atyia, H. E. .
JOURNAL OF ALLOYS AND COMPOUNDS, 2016, 688 :1206-1213
[17]   Dielectric investigation of In4Se96-xSx semiconductor: Relaxation and conduction mechanism [J].
Ganaie, Mohsin ;
Zulfequar, M. .
MICROELECTRONICS RELIABILITY, 2021, 116
[18]   Optimization of thermoelectric properties on Bi2Te3 thin films deposited by thermal co-evaporation [J].
Goncalves, L. M. ;
Couto, C. ;
Alpuim, P. ;
Rolo, A. G. ;
Voelklein, F. ;
Correia, J. H. .
THIN SOLID FILMS, 2010, 518 (10) :2816-2821
[19]  
Gu T., 2014, Pattern Recognit Image Anal, V24, P283, DOI [10.1134/S1054661814020072, DOI 10.1134/S1054661814020072]
[20]   ac conductivity and dielectric properties of amorphous Se80Te20-xGex chalcogenide glass film compositions [J].
Hegab, N. A. ;
Afifi, M. A. ;
Atyia, H. E. ;
Farid, A. S. .
JOURNAL OF ALLOYS AND COMPOUNDS, 2009, 477 (1-2) :925-930