A review on phase change materials employed in Li-ion batteries for thermal management systems

被引:12
作者
Ushak, Svetlana [1 ,2 ]
Song, Wenji [3 ]
Marin, Paula E. [1 ,2 ]
Milian, Yanio [4 ]
Zhao, Ding [3 ]
Grageda, Mario [1 ,2 ]
Lin, Wenye [3 ]
Chen, Mingbiao [3 ]
Han, Ying [3 ]
机构
[1] Univ Antofagasta, Ctr Adv Study Lithium & Ind Minerals CELiMIN, Campus Coloso,Ave Univ Antofagasta, Antofagasta 02800, Chile
[2] Univ Antofagasta, Dept Ingn Quim & Proc Minerales, Campus Coloso,Ave Univ Antofagasta, Antofagasta 02800, Chile
[3] Chinese Acad Sci, Guangzhou Inst Energy Convers, Guangzhou 510640, Peoples R China
[4] Univ Catolica Norte, Lithium IDI Ctr, Dept Ingn Quim & Medio Ambiente, Ave Angamos 0610, Antofagasta 1270709, Chile
关键词
Lithium-ion battery; Thermal management systems; Phase change materials; Paraffins; Industrial waste materials; INTERNAL SHORT-CIRCUIT; PERFORMANCE; COMPOSITE; MODULE; OPTIMIZATION; STORAGE; DESIGN; PACK;
D O I
10.1016/j.apmt.2023.102021
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Heat generated during lithium -ion batteries (LIBs) operation can lead to side reactions involving safety hazards, including fire and explosion, if not effectively dissipated. To address this challenge, the use of an efficient battery thermal management system (BTMS) is essential to regulate temperature within safe operating limits. Hence, this article provides a comprehensive review of lithium batteries and energy storage batteries, encompassing their classification, working principles, structural features, and heat generation mechanisms. A BTMS classification was proposed according to the most studied systems that were identified: Air-cooled, Liquid-cooled, Heat pipe-cooled, and phase change material (PCM)-cooled BTMS. Furthermore, a detailed analysis was conducted on PCM utilization in BTMS, according to its classification, selection criteria, properties enhancement methodologies, and applications. Notably, paraffins and inorganic compounds emerged as promising options for BTMS, with phase change temperatures ranging from 31.0 to 72.0 degree celsius, latent heats from 35.0 to 210.0 J/g, and thermal conductivities of 0.5 to 9.3 Wm(-1)K(-1). The integration of BTMS approaches, such as active and passive cooling, demonstrated potential in reducing power consumption and improving temperature uniformity within LIBs. Inorganic salt hydrates also showed promise in storing and managing heat during thermal runaway, suppressing its propagation, as supported by the 'nail penetration test'. Additionally, the study highlights the growing utilization of industrial waste materials, such as bischofite, known for their cost-effectiveness. It also outlines future trends in BTMS, including active and passive cooling strategies, accurate heat generation modelling, and the potential of nano-enhanced PCM-cooled BTMSs, which could offer improved thermal conductivity. These findings offer a valuable resource for researchers, engineers, and industry professionals engaged in BTMS development and optimization, providing insights into the efficient management of heat for enhanced safety and performance.
引用
收藏
页数:21
相关论文
共 50 条
  • [41] Passive cooling of Li-Ion cells with direct-metal-laser-sintered aluminium heat exchangers filled with phase change materials
    Landini, S.
    Waser, R.
    Stamatiou, A.
    Ravotti, R.
    Worlitschek, J.
    O'Donovan, T. S.
    APPLIED THERMAL ENGINEERING, 2020, 173
  • [42] A Review on Composite Phase Change Materials and Fins-Based Li-Ion Battery Thermal Management Systems with Design Perspectives and Future Outlooks
    Kibria, Md. Golam
    Mohtasim, Md. Shahriar
    Paul, Utpol K.
    Fahim, Istiak Ahmed
    Das, Barun K.
    Mohammed, Hussein A.
    ENERGY & FUELS, 2024, 38 (15) : 13637 - 13660
  • [43] Phase change material based thermal management of lithium ion batteries: A review on thermal performance of various thermal conductivity enhancers
    Sanker, S. Babu
    Baby, Rajesh
    JOURNAL OF ENERGY STORAGE, 2022, 50
  • [44] Thermal Management Techniques for Lithium-Ion Batteries Based on Phase Change Materials: A Systematic Review and Prospective Recommendations
    Shi, Hong
    Cheng, Mengmeng
    Feng, Yi
    Qiu, Chenghui
    Song, Caiyue
    Yuan, Nenglin
    Kang, Chuanzhi
    Yang, Kaijie
    Yuan, Jie
    Li, Yonghao
    ENERGIES, 2023, 16 (02)
  • [45] Phase change materials for thermal management and energy storage: A review
    Lawag, Radhi Abdullah
    Ali, Hafiz Muhammad
    JOURNAL OF ENERGY STORAGE, 2022, 55
  • [46] Impact of configuration on the performance of a hybrid thermal management system including phase change material and water-cooling channels for Li-ion batteries
    Molaeimanesh, G. R.
    Nasiry, S. M. Mirfallah
    Dahmardeh, M.
    APPLIED THERMAL ENGINEERING, 2020, 181
  • [47] Analytical modeling and optimization of phase change thermal management of a Li-ion battery pack
    Parhizi, Mohammad
    Jain, Ankur
    APPLIED THERMAL ENGINEERING, 2019, 148 : 229 - 237
  • [48] Thermal management of lithium-ion batteries with nanofluids and nano-phase change materials: a review
    Yang, Liu
    Zhou, Fengjiao
    Sun, Lei
    Wang, Songyang
    JOURNAL OF POWER SOURCES, 2022, 539
  • [49] Experimental Analysis on the Thermal Management of Lithium-Ion Batteries Based on Phase Change Materials
    Chen, Mingyi
    Zhang, Siyu
    Wang, Guoyang
    Weng, Jingwen
    Ouyang, Dongxu
    Wu, Xiangyang
    Zhao, Luyao
    Wang, Jian
    APPLIED SCIENCES-BASEL, 2020, 10 (20): : 1 - 15
  • [50] Flexible phase change materials for low temperature thermal management in lithium-ion batteries
    Li, Zaichao
    Zhang, Yuang
    Meng, Fantao
    Liu, Lu
    Han, Ronghui
    Zhang, Shufen
    Tang, Bingtao
    JOURNAL OF ENERGY STORAGE, 2023, 74