A review on phase change materials employed in Li-ion batteries for thermal management systems

被引:12
作者
Ushak, Svetlana [1 ,2 ]
Song, Wenji [3 ]
Marin, Paula E. [1 ,2 ]
Milian, Yanio [4 ]
Zhao, Ding [3 ]
Grageda, Mario [1 ,2 ]
Lin, Wenye [3 ]
Chen, Mingbiao [3 ]
Han, Ying [3 ]
机构
[1] Univ Antofagasta, Ctr Adv Study Lithium & Ind Minerals CELiMIN, Campus Coloso,Ave Univ Antofagasta, Antofagasta 02800, Chile
[2] Univ Antofagasta, Dept Ingn Quim & Proc Minerales, Campus Coloso,Ave Univ Antofagasta, Antofagasta 02800, Chile
[3] Chinese Acad Sci, Guangzhou Inst Energy Convers, Guangzhou 510640, Peoples R China
[4] Univ Catolica Norte, Lithium IDI Ctr, Dept Ingn Quim & Medio Ambiente, Ave Angamos 0610, Antofagasta 1270709, Chile
关键词
Lithium-ion battery; Thermal management systems; Phase change materials; Paraffins; Industrial waste materials; INTERNAL SHORT-CIRCUIT; PERFORMANCE; COMPOSITE; MODULE; OPTIMIZATION; STORAGE; DESIGN; PACK;
D O I
10.1016/j.apmt.2023.102021
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Heat generated during lithium -ion batteries (LIBs) operation can lead to side reactions involving safety hazards, including fire and explosion, if not effectively dissipated. To address this challenge, the use of an efficient battery thermal management system (BTMS) is essential to regulate temperature within safe operating limits. Hence, this article provides a comprehensive review of lithium batteries and energy storage batteries, encompassing their classification, working principles, structural features, and heat generation mechanisms. A BTMS classification was proposed according to the most studied systems that were identified: Air-cooled, Liquid-cooled, Heat pipe-cooled, and phase change material (PCM)-cooled BTMS. Furthermore, a detailed analysis was conducted on PCM utilization in BTMS, according to its classification, selection criteria, properties enhancement methodologies, and applications. Notably, paraffins and inorganic compounds emerged as promising options for BTMS, with phase change temperatures ranging from 31.0 to 72.0 degree celsius, latent heats from 35.0 to 210.0 J/g, and thermal conductivities of 0.5 to 9.3 Wm(-1)K(-1). The integration of BTMS approaches, such as active and passive cooling, demonstrated potential in reducing power consumption and improving temperature uniformity within LIBs. Inorganic salt hydrates also showed promise in storing and managing heat during thermal runaway, suppressing its propagation, as supported by the 'nail penetration test'. Additionally, the study highlights the growing utilization of industrial waste materials, such as bischofite, known for their cost-effectiveness. It also outlines future trends in BTMS, including active and passive cooling strategies, accurate heat generation modelling, and the potential of nano-enhanced PCM-cooled BTMSs, which could offer improved thermal conductivity. These findings offer a valuable resource for researchers, engineers, and industry professionals engaged in BTMS development and optimization, providing insights into the efficient management of heat for enhanced safety and performance.
引用
收藏
页数:21
相关论文
共 50 条
  • [31] Bifunctional Liquid Metals Allow Electrical Insulating Phase Change Materials to Dual-Mode Thermal Manage the Li-Ion Batteries
    Guo, Cong
    He, Lu
    Yao, Yihang
    Lin, Weizhi
    Zhang, Yongzheng
    Zhang, Qin
    Wu, Kai
    Fu, Qiang
    NANO-MICRO LETTERS, 2022, 14 (01)
  • [32] Review of thermal management of electronics and phase change materials
    Ghadim, H. Benisi
    Godin, A.
    Veillere, A.
    Duquesne, M.
    Haillot, D.
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2025, 208
  • [33] Thermal issues about Li-ion batteries and recent progress in battery thermal management systems: A review
    Liu, Huaqiang
    Wei, Zhongbao
    He, Weidong
    Zhao, Jiyun
    ENERGY CONVERSION AND MANAGEMENT, 2017, 150 : 304 - 330
  • [34] Investigation of thermal properties of phase change materials for novel hybrid thermal management strategies for cylindrical Li-ion cells
    Shahid, Seham
    Agelin-Chaab, Martin
    APPLIED THERMAL ENGINEERING, 2024, 242
  • [35] The role of phase change materials in lithium-ion batteries: A brief review on current materials, thermal management systems, numerical methods, and experimental models
    Nasajpour-Esfahani, Navid
    Garmestani, Hamid
    Rozati, Mohammadreza
    Smaisim, Ghassan Fadhil
    JOURNAL OF ENERGY STORAGE, 2023, 63
  • [36] Experimental study of a direct evaporative cooling approach for Li-ion battery thermal management
    Zhao, Rui
    Liu, Jie
    Gu, Junjie
    Zhai, Long
    Ma, Fai
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2020, 44 (08) : 6660 - 6673
  • [37] An improved hybrid thermal management system for prismatic Li-ion batteries integrated with mini-channel and phase change materials
    Mousavi, Sepehr
    Zadehkabir, Amirhosein
    Siavashi, Majid
    Yang, Xiaohu
    APPLIED ENERGY, 2023, 334
  • [38] A review of blended cathode materials for use in Li-ion batteries
    Chikkannanavar, Satishkumar B.
    Bernardi, Dawn M.
    Liu, Lingyun
    JOURNAL OF POWER SOURCES, 2014, 248 : 91 - 100
  • [39] Thermal management of Li-ion battery by using eutectic mixture of phase-change materials
    Khan, Rao Rumman Ullah
    Iqbal, Naseem
    Noor, Tayyaba
    Ali, Majid
    Khan, Aamir
    Nazar, Muhammad Waqas
    JOURNAL OF ENERGY STORAGE, 2024, 90
  • [40] Liquid cooling with phase change materials for cylindrical Li-ion batteries: An experimental and numerical study
    Cao, Jiahao
    Luo, Mingyun
    Fang, Xiaoming
    Ling, Ziye
    Zhang, Zhengguo
    ENERGY, 2020, 191