The spectral underpinnings of pathogen spread on animal networks

被引:3
作者
Fountain-Jones, Nicholas M. [1 ]
Silk, Mathew [2 ,3 ]
Appaw, Raima Carol [1 ]
Hamede, Rodrigo [1 ]
Rushmore, Julie [4 ]
VanderWaal, Kimberly [5 ]
Craft, Meggan E. [6 ]
Carver, Scott [1 ]
Charleston, Michael [1 ]
机构
[1] Univ Tasmania, Sch Nat Sci, Hobart, Tas 7001, Australia
[2] Univ Montpellier, Univ Paul Valery Montpellier 3, CNRS, CEFE,EPHE,IRD, Montpellier, France
[3] Univ Exeter, Ctr Ecol & Conservat, Penryn Campus, Penryn, England
[4] Univ Georgia, Odum Sch Ecol, Athens, GA USA
[5] Univ Minnesota, Dept Vet Populat Med, St Paul, MN USA
[6] Univ Minnesota, Dept Ecol, Evolut, & Behav, St Paul, MN USA
基金
澳大利亚研究理事会;
关键词
disease simulation models; wildlife; graph theory; machine learning; CONTACT NETWORKS; DISEASE; TRANSMISSION; MODELS;
D O I
10.1098/rspb.2023.0951
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Predicting what factors promote or protect populations from infectious disease is a fundamental epidemiological challenge. Social networks, where nodes represent hosts and edges represent direct or indirect contacts between them, are important in quantifying these aspects of infectious disease dynamics. However, how network structure and epidemic parameters interact in empirical networks to promote or protect animal populations from infectious disease remains a challenge. Here we draw on advances in spectral graph theory and machine learning to build predictive models of pathogen spread on a large collection of empirical networks from across the animal kingdom. We show that the spectral features of an animal network are powerful predictors of pathogen spread for a variety of hosts and pathogens and can be a valuable proxy for the vulnerability of animal networks to pathogen spread. We validate our findings using interpretable machine learning techniques and provide a flexible web application for animal health practitioners to assess the vulnerability of a particular network to pathogen spread.
引用
收藏
页数:11
相关论文
共 46 条
  • [1] Prakash BA, 2010, Arxiv, DOI arXiv:1004.0060
  • [2] Using network properties to predict disease dynamics on human contact networks
    Ames, Gregory M.
    George, Dylan B.
    Hampson, Christian P.
    Kanarek, Andrew R.
    McBee, Cayla D.
    Lockwood, Dale R.
    Achter, Jeffrey D.
    Webb, Colleen T.
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES, 2011, 278 (1724) : 3544 - 3550
  • [3] Visualizing the effects of predictor variables in black box supervised learning models
    Apley, Daniel W.
    Zhu, Jingyu
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2020, 82 (04) : 1059 - 1086
  • [4] When individual behaviour matters: homogeneous and network models in epidemiology
    Bansal, Shweta
    Grenfell, Bryan T.
    Meyers, Lauren Ancel
    [J]. JOURNAL OF THE ROYAL SOCIETY INTERFACE, 2007, 4 (16) : 879 - 891
  • [5] Bansal Shweta, 2010, Journal of Biological Dynamics, V4, P478, DOI 10.1080/17513758.2010.503376
  • [7] Disease transmission in territorial populations: the small-world network of Serengeti lions
    Craft, Meggan E.
    Volz, Erik
    Packer, Craig
    Meyers, Lauren Ancel
    [J]. JOURNAL OF THE ROYAL SOCIETY INTERFACE, 2011, 8 (59) : 776 - 786
  • [8] Csardi G., 2006, INTERJ COMPLEX SYST, V1695, P1
  • [9] Network-based assessment of the vulnerability of Italian regions to bovine brucellosis
    Darbon, Alexandre
    Valdano, Eugenio
    Poletto, Chiara
    Giovannini, Armando
    Savini, Lara
    Candeloro, Luca
    Colizza, Vittoria
    [J]. PREVENTIVE VETERINARY MEDICINE, 2018, 158 : 25 - 34
  • [10] Six challenges in measuring contact networks for use in modelling
    Eames, K.
    Bansal, S.
    Frost, S.
    Riley, S.
    [J]. EPIDEMICS, 2015, 10 : 72 - 77