NUMERICAL CALCULATION OF EFFECTIVE AREA OF FUNDAMENTAL MODE OF PHOTONIC CRYSTAL FIBERS

被引:0
作者
Coskun, S. [1 ]
Ozturk, Y. [2 ]
机构
[1] Ege Univ, Ege Vocat High Sch, TR-35100 Izmir, Turkiye
[2] Ege Univ, Fac Engn, Dept Elect & Elect, TR-35100 Izmir, Turkiye
关键词
photonic crystal fiber; effective area; mode field diameter; correction function; EFFECTIVE-INDEX METHOD; FIELD DIAMETER; OPTICAL-FIBER; SUPERCONTINUUM GENERATION; DISPERSION; PROPAGATION; DESIGN;
D O I
10.3116/16091833/Ukr.J.Phys.Opt.2024.02069
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The fundamental mode effective area of photonic crystal fiber (PCF) is calculated numerically using the cubic polynomial correction function as the correction factor of Marcuse and Petermann II equations. The numerical calculations are implemented using modified Marcuse and Petermann II methods for six different PCFs in the 1-2 um wavelength range. The full-vectorial finite element method-based simulations are utilized to determine the effective area and coefficients of the cubic polynomial functions. After using the correction functions, by comparing the calculated effective area values with the values from the simulations, residuals of correction are obtained in the range of -1.1110 mu m(2)+2.6610 um and -1.4x10-3 mu m(2) +5.11210 mu m(2) respectively. These low residual values indicate that the offered method can be used successfully to calculate the wavelength-dependent effective mode area of PCFs in the investigated wavelength range without using simulations and complex theory.
引用
收藏
页码:2069 / 2079
页数:11
相关论文
共 35 条
[1]  
Agrawal G.P., 2019, NONLINEAR FIBER OPTI, V6th
[2]   MODE FIELD DIAMETER MEASUREMENTS IN SINGLE-MODE OPTICAL FIBERS [J].
ARTIGLIA, M ;
COPPA, G ;
DIVITA, P ;
POTENZA, M ;
SHARMA, A .
JOURNAL OF LIGHTWAVE TECHNOLOGY, 1989, 7 (08) :1139-1152
[3]   Endlessly single-mode photonic crystal fiber [J].
Birks, TA ;
Knight, JC ;
Russell, PS .
OPTICS LETTERS, 1997, 22 (13) :961-963
[4]   Complete analysis of the characteristics of propagation into photonic crystal fibers, by the finite element method [J].
Brechet, F ;
Marcou, J ;
Pagnoux, D ;
Roy, P .
OPTICAL FIBER TECHNOLOGY, 2000, 6 (02) :181-191
[5]   Photonic crystal fibers: A new class of optical waveguides [J].
Broeng, J ;
Mogilevstev, D ;
Barkou, SE ;
Bjarklev, A .
OPTICAL FIBER TECHNOLOGY, 1999, 5 (03) :305-330
[6]   Photonic crystal fibers [J].
Buczynski, R .
ACTA PHYSICA POLONICA A, 2004, 106 (02) :141-167
[7]   Applied magnetic field effect on core mode properties of MFPCF [J].
Coskun, Seyhan ;
Ozturk, Yavuz ;
Kahraman, Gokalp .
MICRO & NANO LETTERS, 2018, 13 (09) :1306-1309
[8]  
Downie J.D., 2019, Handbook of Optical Fibers
[9]   Supercontinuum generation in photonic crystal fiber [J].
Dudley, John M. ;
Genty, Goery ;
Coen, Stephane .
REVIEWS OF MODERN PHYSICS, 2006, 78 (04) :1135-1184
[10]   Ultra-Wideband WDM Transmission in S-, C-, and L-Bands Using Signal Power Optimization Scheme [J].
Hamaoka, Fukutaro ;
Nakamura, Masanori ;
Okamoto, Seiji ;
Minoguchi, Kyo ;
Sasai, Takeo ;
Matsushita, Asuka ;
Yamazaki, Etsushi ;
Kisaka, Yoshiaki .
JOURNAL OF LIGHTWAVE TECHNOLOGY, 2019, 37 (08) :1764-1771