The role of deep learning for periapical lesion detection on panoramic radiographs

被引:13
|
作者
Celik, Berrin [1 ]
Savastaer, Ertugrul Furkan [2 ]
Kaya, Halil Ibrahim [2 ]
Celik, Mahmut Emin [2 ,3 ]
机构
[1] Ankara Yildirim Beyazit Univ, Oral & Maxillofacial Radiol Dept, Fac Dent, Ankara, Turkiye
[2] Gazi Univ, Elect Elect Engn Dept, Fac Engn, Ankara, Turkiye
[3] Gazi Univ, Gazi Univ Hosp, Biomed Calibrat & Res Ctr, Ankara, Turkiye
关键词
lesion; detection; deep learning; artificial intelligence; dentistry; diagnosis; ARTIFICIAL-INTELLIGENCE; PERFORMANCE; DIAGNOSIS;
D O I
10.1259/dmfr.20230118
中图分类号
R78 [口腔科学];
学科分类号
1003 ;
摘要
Objective: This work aimed to detect automatically periapical lesion on panoramic radiographs (PRs) using deep learning. Methods: 454 objects in 357 PRs were anonymized and manually labeled. They are then pre-processed to improve image quality and enhancement purposes. The data were randomly assigned into the training, validation, and test folders with ratios of 0.8, 0.1, and 0.1, respectively. The state-of-art 10 different deep learning-based detection frameworks including various backbones were applied to periapical lesion detection problem. Model performances were evaluated by mean average precision, accuracy, precision, recall, F1 score, precision-recall curves, area under curve and several other Common Objects in Context detection evaluation metrics. Results: Deep learning-based detection frameworks were generally successful in detecting periapical lesions on PRs. Detection performance, mean average precision, varied between 0.832 and 0.953 while accuracy was between 0.673 and 0.812 for all models. F1 score was between 0.8 and 0.895. RetinaNet performed the best detection performance, similarly Adaptive Training Sample Selection provided F1 score of 0.895 as highest value. Testing with external data supported our findings. Conclusion: This work showed that deep learning models can reliably detect periapical lesions on PRs. Artificial intelligence-based on deep learning tools are revolutionizing dental healthcare and can help both clinicians and dental healthcare system.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Deep Learning-Based Periapical Lesion Detection on Panoramic Radiographs
    Szabo, Viktor
    Orhan, Kaan
    Dobo-Nagy, Csaba
    Veres, Daniel Sandor
    Manulis, David
    Ezhov, Matvey
    Sanders, Alex
    Szabo, Bence Tamas
    DIAGNOSTICS, 2025, 15 (04)
  • [2] Detection of Periapical Lesions on Panoramic Radiographs Using Deep Learning
    Ba-Hattab, Raidan
    Barhom, Noha
    Osman, Safa A. Azim
    Naceur, Iheb
    Odeh, Aseel
    Asad, Arisha
    Al-Najdi, Shahd Ali R. N.
    Ameri, Ehsan
    Daer, Ammar
    Da Silva, Renan L. B.
    Costa, Claudio
    Cortes, Arthur R. G.
    Tamimi, Faleh
    APPLIED SCIENCES-BASEL, 2023, 13 (03):
  • [3] Segmentation of periapical lesions with automatic deep learning on panoramic radiographs: an artificial intelligence study
    Boztuna, Mehmet
    Firincioglulari, Mujgan
    Akkaya, Nurullah
    Orhan, Kaan
    BMC ORAL HEALTH, 2024, 24 (01):
  • [4] Deep Learning for Automated Detection of Cyst and Tumors of the Jaw in Panoramic Radiographs
    Yang, Hyunwoo
    Jo, Eun
    Kim, Hyung Jun
    Cha, In-ho
    Jung, Young-Soo
    Nam, Woong
    Kim, Jun-Young
    Kim, Jin-Kyu
    Kim, Yoon Hyeon
    Oh, Tae Gyeong
    Han, Sang-Sun
    Kim, Hwiyoung
    Kim, Dongwook
    JOURNAL OF CLINICAL MEDICINE, 2020, 9 (06) : 1 - 14
  • [5] Detection of carotid plaques on panoramic radiographs using deep learning
    Vinayahalingam, Shankeeth
    van Nistelrooij, Niels
    Xi, Tong
    Heiland, Max
    Bressem, Keno
    Rendenbach, Carsten
    Fluegge, Tabea
    Gaudin, Robert
    JOURNAL OF DENTISTRY, 2024, 151
  • [6] Development of a Deep Learning Algorithm for Periapical Disease Detection in Dental Radiographs
    Endres, Michael G.
    Hillen, Florian
    Salloumis, Marios
    Sedaghat, Ahmad R.
    Niehues, Stefan M.
    Quatela, Olivia
    Hanken, Henning
    Smeets, Ralf
    Beck-Broichsitter, Benedicta
    Rendenbach, Carsten
    Lakhani, Karim
    Heiland, Max
    Gaudin, Robert A.
    DIAGNOSTICS, 2020, 10 (06)
  • [7] Clinical Validation of Deep Learning for Segmentation of Multiple Dental Features in Periapical Radiographs
    Jagtap, Rohan
    Samata, Yalamanchili
    Parekh, Amisha
    Tretto, Pedro
    Roach, Michael D.
    Sethumanjusha, Saranu
    Tejaswi, Chennupati
    Jaju, Prashant
    Friedel, Alan
    Briner Garrido, Michelle
    Feinberg, Maxine
    Suri, Mini
    BIOENGINEERING-BASEL, 2024, 11 (10):
  • [8] Deep learning-based apical lesion segmentation from panoramic radiographs
    Song, Il-Seok
    Shin, Hak-Kyun
    Kang, Ju-Hee
    Kim, Jo-Eun
    Huh, Kyung-Hoe
    Yi, Won-Jin
    Lee, Sam-Sun
    Heo, Min-Suk
    IMAGING SCIENCE IN DENTISTRY, 2022, 52 (04) : 351 - 357
  • [9] Classification of mandibular molar furcation involvement in periapical radiographs by deep learning
    Vilkomir, Katerina
    Phen, Cody
    Baldwin, Fiondra
    Cole, Jared
    Herndon, Nic
    Zhang, Wenjian
    IMAGING SCIENCE IN DENTISTRY, 2024, 54 (03) : 257 - 263
  • [10] Automated detection of dental restorations using deep learning on panoramic radiographs
    Celik, Berrin
    Celik, Mahmut Emin
    DENTOMAXILLOFACIAL RADIOLOGY, 2022, 51 (08)