Mechanical Properties of Ultra-High Performance Concrete (UHPC) and Ultra-High Performance Fiber-Reinforced Concrete (UHPFRC) with Recycled Sand

被引:8
|
作者
Choi, Donguk [1 ]
Hong, Kyungchan [2 ]
Ochirbud, Munkhtuvshin [1 ]
Meiramov, Didar [2 ]
Sukontaskuul, Piti [3 ]
机构
[1] Hankyong Natl Univ, Ind Acad Cooperat Fdn, Anseong, South Korea
[2] Hankyong Natl Univ, Dept Architectural Engn, Anseong, South Korea
[3] King Mongkuts Univ Technol North Bangkok, Dept Civil Engn, Bangkok, Thailand
基金
新加坡国家研究基金会;
关键词
UHPC; UHPRFC; Recycled sand; Experimental packing density; Environmental impact; BEHAVIOR; POWDER;
D O I
10.1186/s40069-023-00631-2
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Use of high-cost raw materials such as quartz sand can limit wider application of ultra-high performance concrete in concrete construction. In this experimental study, recycled sand was used to fabricate ultra-high performance concrete (UHPC) and ultra-high performance fiber-reinforced concrete (UHPFRC). Green UHPC with ordinary Portland cement and industrial by-products such as silica fume, fly ash, as well as recycled sand was first developed through two-step packing density tests to optimize the mix design. UHPFRC was then developed based on the UHPC mix designs and by using 1%, 2%, or 3% 13-mm straight steel fibers (SSF). The compressive strength, elastic modulus, and flexural tensile strength was 128 MPa, 46.9 GPa, and 11.9 MPa, respectively, after 28 days at water-to-binder ratio of 0.17 and with 2% SSFs. All high-performance concretes in this work utilized 100% commercially available recycled sand that was produced by wet processing method. Mechanical characteristics such as strength, elastic modulus, and density, absorption, and voids of the UHPC/UHPFRC were investigated. Development of autogenous shrinkage of UHPC/UHPFRC with recycled sand was monitored for 12 weeks, while mercury intrusion porosimetry test and scanning electron microscopy were performed for microstructural investigation. Finally, the environmental impacts and economical aspects of the green UHPC were evaluated by life cycle assessment (LCA) and cost analysis.
引用
收藏
页数:20
相关论文
共 50 条
  • [41] Development and properties of cost-effective self-sensing Ultra-High Performance Fiber-Reinforced Concrete (UHPFRC) incorporating steel slags
    Liu, Zhijie
    Qi, Xibo
    Yu, Zhengkang
    Ke, Jia
    Gao, Xu
    Shui, Zhonghe
    CONSTRUCTION AND BUILDING MATERIALS, 2024, 449
  • [42] Mechanical and Microstructural Properties of Ultra-High Performance Concrete with Lightweight Aggregates
    Alanazi, Hani
    Elalaoui, Oussama
    Adamu, Musa
    Alaswad, Saleh O.
    Ibrahim, Yasser E.
    Abadel, Aref A.
    Al Fuhaid, Abdulrahman Fahad
    BUILDINGS, 2022, 12 (11)
  • [43] Optimized mix design method of ultra-high performance concrete (UHPC) and effect of high steel fiber content: Mechanical performance and shrinkage properties
    Li, Wangxin
    Zhao, Yang
    Zhang, Yunsheng
    Xie, Zhicheng
    Zhang, Jiufu
    Huang, Fagang
    Meng, Likun
    He, Zhiyuan
    Xia, Jingliang
    Zhang, Yu
    Zhu, Weiwei
    JOURNAL OF BUILDING ENGINEERING, 2024, 97
  • [44] Effect of steel slag on the mechanical properties and self-sensing capability of ultra-high performance concrete (UHPC)
    Kang, Munhwa
    Kang, Min-Chang
    Yonis, Aidarus
    Vashistha, Prabhat
    Pyo, Sukhoon
    DEVELOPMENTS IN THE BUILT ENVIRONMENT, 2024, 17
  • [45] Intelligent design and manufacturing of ultra-high performance concrete (UHPC)-A review
    Fan, Dingqiang
    Zhu, Jinyun
    Fan, Mengxin
    Lu, Jian-Xin
    Chu, S. H.
    Dong, Enlai
    Yu, Rui
    CONSTRUCTION AND BUILDING MATERIALS, 2023, 385
  • [46] Strain-hardening ultra-high performance concrete (UHPC) with hybrid steel and ultra-high molecular weight polyethylene fibers
    Chu, S. H.
    CONSTRUCTION AND BUILDING MATERIALS, 2024, 438
  • [47] Tensile behavior of textile reinforced ultra-high performance concrete
    Yao, Yiming
    Sun, Yuanfeng
    Zhai, Mengchao
    Chen, Can
    Lu, Cong
    Wang, Jingquan
    CONSTRUCTION AND BUILDING MATERIALS, 2024, 411
  • [48] Effect of Hollow 304 Stainless Steel Fiber on Corrosion Resistance and Mechanical Properties of Ultra-High Performance Concrete (UHPC)
    Li, Tianran
    Yan, Yulong
    Xu, Chengying
    Han, Xiangnan
    Liu, Yang
    Qi, Haiquan
    Ming, Yang
    MATERIALS, 2023, 16 (10)
  • [49] Flexural strengthening of reinforced concrete beams or slabs using ultra-high performance concrete (UHPC): A state of the art review
    Zhu, Yanping
    Zhang, Yang
    Hussein, Husam H.
    Chen, Genda
    ENGINEERING STRUCTURES, 2020, 205 (205)
  • [50] Effect of Casting Position on Mechanical Performance of Ultra-High Performance Concrete
    Zhao, Sujing
    Bo, Yiheng
    MATERIALS, 2022, 15 (02)