Mechanical Properties of Ultra-High Performance Concrete (UHPC) and Ultra-High Performance Fiber-Reinforced Concrete (UHPFRC) with Recycled Sand

被引:8
|
作者
Choi, Donguk [1 ]
Hong, Kyungchan [2 ]
Ochirbud, Munkhtuvshin [1 ]
Meiramov, Didar [2 ]
Sukontaskuul, Piti [3 ]
机构
[1] Hankyong Natl Univ, Ind Acad Cooperat Fdn, Anseong, South Korea
[2] Hankyong Natl Univ, Dept Architectural Engn, Anseong, South Korea
[3] King Mongkuts Univ Technol North Bangkok, Dept Civil Engn, Bangkok, Thailand
基金
新加坡国家研究基金会;
关键词
UHPC; UHPRFC; Recycled sand; Experimental packing density; Environmental impact; BEHAVIOR; POWDER;
D O I
10.1186/s40069-023-00631-2
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Use of high-cost raw materials such as quartz sand can limit wider application of ultra-high performance concrete in concrete construction. In this experimental study, recycled sand was used to fabricate ultra-high performance concrete (UHPC) and ultra-high performance fiber-reinforced concrete (UHPFRC). Green UHPC with ordinary Portland cement and industrial by-products such as silica fume, fly ash, as well as recycled sand was first developed through two-step packing density tests to optimize the mix design. UHPFRC was then developed based on the UHPC mix designs and by using 1%, 2%, or 3% 13-mm straight steel fibers (SSF). The compressive strength, elastic modulus, and flexural tensile strength was 128 MPa, 46.9 GPa, and 11.9 MPa, respectively, after 28 days at water-to-binder ratio of 0.17 and with 2% SSFs. All high-performance concretes in this work utilized 100% commercially available recycled sand that was produced by wet processing method. Mechanical characteristics such as strength, elastic modulus, and density, absorption, and voids of the UHPC/UHPFRC were investigated. Development of autogenous shrinkage of UHPC/UHPFRC with recycled sand was monitored for 12 weeks, while mercury intrusion porosimetry test and scanning electron microscopy were performed for microstructural investigation. Finally, the environmental impacts and economical aspects of the green UHPC were evaluated by life cycle assessment (LCA) and cost analysis.
引用
收藏
页数:20
相关论文
共 50 条
  • [21] Shear behavior of fiber-reinforced ultra-high performance concrete beams
    Meszoely, Tamas
    Randl, Norbert
    ENGINEERING STRUCTURES, 2018, 168 : 119 - 127
  • [22] Flexural toughness of hybrid fiber-reinforced ultra-high performance concrete
    Deng Z.
    Xue H.
    Harbin Gongcheng Daxue Xuebao/Journal of Harbin Engineering University, 2023, 44 (08): : 1288 - 1294
  • [23] Strengthening of RC columns by ultra-high performance fiber reinforced concrete (UHPFRC) jacketing
    Dadvar, Sayyed Ali
    Mostofinejad, Davood
    Bahmani, Hadi
    CONSTRUCTION AND BUILDING MATERIALS, 2020, 235
  • [24] Fiber-reinforced ultra-high performance concrete under tensile loads
    Millon, O.
    Riedel, W.
    Thoma, K.
    Fehling, E.
    Noeldgen, M.
    DYMAT 2009: 9TH INTERNATIONAL CONFERENCE ON THE MECHANICAL AND PHYSICAL BEHAVIOUR OF MATERIALS UNDER DYNAMIC LOADING, VOL 1, 2009, : 671 - +
  • [25] Experimental study on the static properties of bamboo fiber reinforced ultra-high performance concrete (UHPC)
    Zhao, Hua
    Tang, Jie
    Li, Ziwei
    Zhou, Tao
    Xiong, Tianwang
    CONSTRUCTION AND BUILDING MATERIALS, 2024, 453
  • [26] Strengthening of Reinforced Concrete Columns Using Ultra-High Performance Fiber-Reinforced Concrete Jacket
    Shehab, Hamdy
    Eisa, Ahmed
    Wahba, Ahmed Mohamed
    Sabol, Peter
    Katunsky, Dusan
    BUILDINGS, 2023, 13 (08)
  • [27] Physical-mechanical properties and durability of Ultra-high Performance Concrete (UHPC)
    Mitrovic, Stefan
    Popovic, Dragana
    Tepavcevic, Miroslav
    Zakic, Dimitrije
    GRADEVNSKI MATERIJIALI I KONSTRUKCIJE-BUILDING MATERIALS AND STRUCTURES, 2021, 64 (02): : 109 - 117
  • [28] Mix design and properties assessment of Ultra-High Performance Fibre Reinforced Concrete (UHPFRC)
    Yu, R.
    Spiesz, P.
    Brouwers, H. J. H.
    CEMENT AND CONCRETE RESEARCH, 2014, 56 : 29 - 39
  • [29] Setting times, consistency and mechanical properties of ultra high performance fiber-reinforced concrete (UHPFRC)
    Gimenez-Carbo, E.
    Torres Remon, R.
    Serna Ros, P.
    V CONGRESO IBEROAMERICANO DE HORMIGON AUTOCOMPACTANTE Y HORMIGONES ESPECIALES, 2018, : 557 - 566
  • [30] Influence of aggregate and curing regime on the mechanical properties of ultra-high performance fibre reinforced concrete (UHPFRC)
    Yang, S. L.
    Millard, S. G.
    Soutsos, M. N.
    Barnett, S. J.
    Le, T. T.
    CONSTRUCTION AND BUILDING MATERIALS, 2009, 23 (06) : 2291 - 2298