Mechanical Properties of Ultra-High Performance Concrete (UHPC) and Ultra-High Performance Fiber-Reinforced Concrete (UHPFRC) with Recycled Sand

被引:8
|
作者
Choi, Donguk [1 ]
Hong, Kyungchan [2 ]
Ochirbud, Munkhtuvshin [1 ]
Meiramov, Didar [2 ]
Sukontaskuul, Piti [3 ]
机构
[1] Hankyong Natl Univ, Ind Acad Cooperat Fdn, Anseong, South Korea
[2] Hankyong Natl Univ, Dept Architectural Engn, Anseong, South Korea
[3] King Mongkuts Univ Technol North Bangkok, Dept Civil Engn, Bangkok, Thailand
基金
新加坡国家研究基金会;
关键词
UHPC; UHPRFC; Recycled sand; Experimental packing density; Environmental impact; BEHAVIOR; POWDER;
D O I
10.1186/s40069-023-00631-2
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Use of high-cost raw materials such as quartz sand can limit wider application of ultra-high performance concrete in concrete construction. In this experimental study, recycled sand was used to fabricate ultra-high performance concrete (UHPC) and ultra-high performance fiber-reinforced concrete (UHPFRC). Green UHPC with ordinary Portland cement and industrial by-products such as silica fume, fly ash, as well as recycled sand was first developed through two-step packing density tests to optimize the mix design. UHPFRC was then developed based on the UHPC mix designs and by using 1%, 2%, or 3% 13-mm straight steel fibers (SSF). The compressive strength, elastic modulus, and flexural tensile strength was 128 MPa, 46.9 GPa, and 11.9 MPa, respectively, after 28 days at water-to-binder ratio of 0.17 and with 2% SSFs. All high-performance concretes in this work utilized 100% commercially available recycled sand that was produced by wet processing method. Mechanical characteristics such as strength, elastic modulus, and density, absorption, and voids of the UHPC/UHPFRC were investigated. Development of autogenous shrinkage of UHPC/UHPFRC with recycled sand was monitored for 12 weeks, while mercury intrusion porosimetry test and scanning electron microscopy were performed for microstructural investigation. Finally, the environmental impacts and economical aspects of the green UHPC were evaluated by life cycle assessment (LCA) and cost analysis.
引用
收藏
页数:20
相关论文
共 50 条
  • [21] Design and Performance of a Precast Bridge Barrier with Ultra-high Performance Fibre Reinforced Concrete (UHPFRC)
    Desmettre, Clelia
    Charron, Jean-Philippe
    Gendron, Frederick
    FIBRE REINFORCED CONCRETE: IMPROVEMENTS AND INNOVATIONS II, BEFIB 2021, 2022, 36 : 471 - 482
  • [22] Mechanical and fracture properties of ultra-high performance concrete (UHPC) containing waste glass sand as partial replacement material
    Jiao, Yubo
    Zhang, Yao
    Guo, Meng
    Zhang, Lidong
    Ning, Hao
    Liu, Shiqi
    JOURNAL OF CLEANER PRODUCTION, 2020, 277
  • [23] Punching shear and flexural performance of ultra-high performance fibre reinforced concrete (UHPFRC) slabs
    Lampropoulos, Andreas
    Tsioulou, Ourania
    Mina, Anna
    Nicolaides, Demetris
    Petrou, Michael F.
    ENGINEERING STRUCTURES, 2023, 281
  • [24] Effects of PVA fiber on shrinkage deformation and mechanical properties of ultra-high performance concrete
    Yao, Jie
    Ge, Yali
    Ruan, Wenqiang
    Meng, Jing
    CONSTRUCTION AND BUILDING MATERIALS, 2024, 417
  • [25] Research on the bond performance between glass fiber reinforced polymer (GFRP) bars and Ultra-high performance concrete(UHPC)
    Xiao, Jie
    Liu, Lingfei
    Zeng, Hehui
    Zhai, Keyi
    Fu, Jundong
    Jiang, Haibo
    Pang, Lei
    JOURNAL OF BUILDING ENGINEERING, 2024, 98
  • [26] Microstructure and radiation shielding characteristics of PVA fiber-reinforced ultra-high performance concrete
    Xia, Yan
    Zhao, Yading
    Shi, Daquan
    Ma, Xiaobing
    Wang, Jian
    Yu, Kunyang
    Liu, Minghao
    Zhao, Di
    RADIATION PHYSICS AND CHEMISTRY, 2024, 224
  • [27] Influence of alccofine incorporation on the mechanical behavior of ultra-high performance concrete (UHPC)
    Reddy, G. Gautham Kishore
    Ramadoss, P.
    MATERIALS TODAY-PROCEEDINGS, 2020, 33 : 789 - 797
  • [28] Effect of temperature on mechanical properties of ultra-high performance concrete
    Banerji, Srishti
    Kodur, Venkatesh
    FIRE AND MATERIALS, 2022, 46 (01) : 287 - 301
  • [29] Preparation and properties of ultra-high performance lightweight concrete
    Pan, Huimin
    Yan, Shuaijun
    Zhao, Qingxin
    Wang, Dongli
    MAGAZINE OF CONCRETE RESEARCH, 2023, 75 (06) : 310 - 323
  • [30] Study on the mechanical and rheological properties of ultra-high performance concrete
    Chen, Ying
    Liu, Peng
    Sha, Fei
    Yin, Jian
    He, Sasa
    Li, Qianghui
    Yu, Zhiwu
    Chen, Hailong
    JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2022, 17 : 111 - 124