Point process convergence for symmetric functions of high-dimensional random vectors

被引:0
|
作者
Heiny, Johannes [1 ]
Kleemann, Carolin [2 ]
机构
[1] Stockholm Univ, Dept Math, Albano Hus 1, S-10691 Stockholm, Sweden
[2] Ruhr Univ Bochum, Fak Math, Univ Str 150, D-44780 Bochum, Germany
关键词
Point process convergence; Extreme value theory; Poisson process; Gumbel distribution; High-dimensional data; U-statistics; Kendall's tau; Spearman's rho; POISSON APPROXIMATION; INDEPENDENCE; DEVIATIONS; STATISTICS;
D O I
10.1007/s10687-023-00482-w
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The convergence of a sequence of point processes with dependent points, defined by a symmetric function of iid high-dimensional random vectors, to a Poisson random measure is proved. This also implies the convergence of the joint distribution of a fixed number of upper order statistics. As applications of the result a generalization of maximum convergence to point process convergence is given for simple linear rank statistics, rank-type U-statistics and the entries of sample covariance matrices.
引用
收藏
页码:185 / 217
页数:33
相关论文
共 50 条
  • [1] Point process convergence for symmetric functions of high-dimensional random vectors
    Johannes Heiny
    Carolin Kleemann
    Extremes, 2024, 27 : 185 - 217
  • [2] Recursive Functions in High-Dimensional Computing with Random Vectors
    Poikonen, Jussi H.
    Lehtonen, Eero
    Laiho, Mika
    2016 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2016, : 5194 - 5201
  • [3] Maximum inter point distance of high-dimensional random vectors
    Heiny, Johannes
    Kleemann, Carolin
    BERNOULLI, 2025, 31 (01) : 537 - 560
  • [4] High-dimensional generation of Bernoulli random vectors
    Modarres, Reza
    STATISTICS & PROBABILITY LETTERS, 2011, 81 (08) : 1136 - 1142
  • [5] A test for the complete independence of high-dimensional random vectors
    Li, Weiming
    Liu, Zhi
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2016, 86 (16) : 3135 - 3140
  • [6] High-Dimensional Mahalanobis Distances of Complex Random Vectors
    Dai, Deliang
    Liang, Yuli
    MATHEMATICS, 2021, 9 (16)
  • [7] Two-point functions of random-length random walk on high-dimensional boxes
    Deng, Youjin
    Garoni, Timothy M.
    Grimm, Jens
    Zhou, Zongzheng
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2024, 2024 (02):
  • [8] A Simple Method for Testing Independence of High-Dimensional Random Vectors
    Jakimauskas, Gintautas
    Radavicius, Marijus
    Susinskas, Jurgis
    AUSTRIAN JOURNAL OF STATISTICS, 2008, 37 (01) : 101 - 108
  • [9] On the test of covariance between two high-dimensional random vectors
    Chen, Yongshuai
    Guo, Wenwen
    Cui, Hengjian
    STATISTICAL PAPERS, 2024, 65 (05) : 2687 - 2717
  • [10] COMPLEXITY OF RANDOM SMOOTH FUNCTIONS ON THE HIGH-DIMENSIONAL SPHERE
    Auffinger, Antonio
    Ben Arous, Gerard
    ANNALS OF PROBABILITY, 2013, 41 (06): : 4214 - 4247