A convergence criterion for elliptic variational inequalities

被引:2
|
作者
Gariboldi, Claudia [1 ]
Ochal, Anna [2 ]
Sofonea, Mircea [3 ]
Tarzia, Domingo A. [4 ,5 ]
机构
[1] Univ Nacl Rio Cuarto, Dept Matemat, FCEFQyN, Rio Cuarto, Argentina
[2] Jagiellonian Univ Krakow, Chair Optimizat & Control, Krakow, Poland
[3] Univ Perpignan Via Domitia, Lab Math & Phys, Perpignan, France
[4] Univ Austral, Dept Matemat, FCE, Rosario, Argentina
[5] Consejo Nacl Invest Cient & Tecn, Buenos Aires, Argentina
基金
欧盟地平线“2020”;
关键词
Elliptic variational inequality; convergence criterion; convergence results; well-posedness; contact; heat transfer; unilateral constraint; POLYAK WELL-POSEDNESS;
D O I
10.1080/00036811.2023.2268636
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider an elliptic variational inequality with unilateral constraints in a Hilbert space X which, under appropriate assumptions on the data, has a unique solution u. We formulate a convergence criterion to the solution u, i.e. we provide necessary and sufficient conditions on a sequence $ \{u_n\}\subset X $ {un}subset of X which guarantee the convergence $ u_n\to u $ un -> u in the space X. Then we illustrate the use of this criterion to recover well-known convergence results and well-posedness results in the sense of Tykhonov and Levitin-Polyak. We also provide two applications of our results, in the study of a heat transfer problem and an elastic frictionless contact problem, respectively.
引用
收藏
页码:1810 / 1830
页数:21
相关论文
共 50 条