A convergence criterion for elliptic variational inequalities

被引:2
|
作者
Gariboldi, Claudia [1 ]
Ochal, Anna [2 ]
Sofonea, Mircea [3 ]
Tarzia, Domingo A. [4 ,5 ]
机构
[1] Univ Nacl Rio Cuarto, Dept Matemat, FCEFQyN, Rio Cuarto, Argentina
[2] Jagiellonian Univ Krakow, Chair Optimizat & Control, Krakow, Poland
[3] Univ Perpignan Via Domitia, Lab Math & Phys, Perpignan, France
[4] Univ Austral, Dept Matemat, FCE, Rosario, Argentina
[5] Consejo Nacl Invest Cient & Tecn, Buenos Aires, Argentina
基金
欧盟地平线“2020”;
关键词
Elliptic variational inequality; convergence criterion; convergence results; well-posedness; contact; heat transfer; unilateral constraint; POLYAK WELL-POSEDNESS;
D O I
10.1080/00036811.2023.2268636
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider an elliptic variational inequality with unilateral constraints in a Hilbert space X which, under appropriate assumptions on the data, has a unique solution u. We formulate a convergence criterion to the solution u, i.e. we provide necessary and sufficient conditions on a sequence $ \{u_n\}\subset X $ {un}subset of X which guarantee the convergence $ u_n\to u $ un -> u in the space X. Then we illustrate the use of this criterion to recover well-known convergence results and well-posedness results in the sense of Tykhonov and Levitin-Polyak. We also provide two applications of our results, in the study of a heat transfer problem and an elastic frictionless contact problem, respectively.
引用
收藏
页码:1810 / 1830
页数:21
相关论文
共 50 条
  • [21] Variational inequalities of elliptic and parabolic type
    Rudd, M
    Schmitt, K
    TAIWANESE JOURNAL OF MATHEMATICS, 2002, 6 (03): : 287 - 322
  • [22] On the Boundedness of Solutions to Elliptic Variational Inequalities
    Patrick Winkert
    Set-Valued and Variational Analysis, 2014, 22 : 763 - 781
  • [23] On the Boundedness of Solutions to Elliptic Variational Inequalities
    Winkert, Patrick
    SET-VALUED AND VARIATIONAL ANALYSIS, 2014, 22 (04) : 763 - 781
  • [24] Some aspects of elliptic variational inequalities
    Rizwan Butt
    Korean Journal of Computational & Applied Mathematics, 1997, 4 (2): : 373 - 386
  • [25] On box schemes for elliptic variational inequalities
    Steinbach, J
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 1997, 18 (9-10) : 1041 - 1066
  • [26] Optimal Control of Elliptic Variational Inequalities
    K. Ito
    K. Kunisch
    Applied Mathematics and Optimization, 2000, 41 : 343 - 364
  • [27] On convergence of solutions to variational–hemivariational inequalities
    Biao Zeng
    Zhenhai Liu
    Stanisław Migórski
    Zeitschrift für angewandte Mathematik und Physik, 2018, 69
  • [28] Convergence results for elliptic quasivariational inequalities
    Mircea Sofonea
    Ahlem Benraouda
    Zeitschrift für angewandte Mathematik und Physik, 2017, 68
  • [29] Convergence results for elliptic quasivariational inequalities
    Sofonea, Mircea
    Benraouda, Ahlem
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2017, 68 (01):
  • [30] CONVERGENCE OF SOLUTIONS OF VARIATIONAL INEQUALITIES WITH OBSTACLE
    ATTOUCH, H
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1978, 287 (15): : 1001 - 1003