Quantum Metrology in the Noisy Intermediate-Scale Quantum Era

被引:14
作者
Jiao, Lin [1 ]
Wu, Wei [1 ]
Bai, Si-Yuan [1 ]
An, Jun-Hong [1 ]
机构
[1] Lanzhou Univ, Lanzhou Ctr Theoret Phys, Key Lab Quantum Theory & Applicat MoE, Lanzhou 730000, Peoples R China
基金
中国国家自然科学基金;
关键词
decoherence control; Heisenberg limit; quantum metrology; shot-noise limit; HEISENBERG LIMIT; THERMALIZATION; ENTANGLEMENT; STATES; GYROSCOPE; DYNAMICS; CHAOS;
D O I
10.1002/qute.202300218
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Quantum metrology pursues the physical realization of higher-precision measurements to physical quantities than the classically achievable limit by exploiting quantum features, such as entanglement and squeezing, as resources. It has potential applications in developing next-generation frequency standards, magnetometers, radar, and navigation. However, the ubiquitous decoherence in the quantum world degrades the quantum resources and forces the precision back to or even worse than the classical limit, which is called the no-go theorem of noisy quantum metrology and greatly hinders its applications. Therefore, how to realize the promised performance of quantum metrology in realistic noisy situations attracts much attention in recent years. The principle, categories, and applications of quantum metrology are reviewed. Special attention is paid to different quantum resources that can bring quantum superiority in enhancing sensitivity. Then, the no-go theorem of noisy quantum metrology and its active control under different kinds of noise-induced decoherence situations are introduced. This is a brief review on the principle, categories, and applications of quantum metrology. Special attention is paid to different quantum resources that can bring quantum superiority in enhancing sensitivity. Then, the paper reviews the no-go theorem of noisy quantum metrology and its active control under different noise-induced decoherence situations.image
引用
收藏
页数:20
相关论文
共 239 条
[21]   Composite-Light-Pulse Technique for High-Precision Atom Interferometry [J].
Berg, P. ;
Abend, S. ;
Tackmann, G. ;
Schubert, C. ;
Giese, E. ;
Schleich, W. P. ;
Narducci, F. A. ;
Ertmer, W. ;
Rasel, E. M. .
PHYSICAL REVIEW LETTERS, 2015, 114 (06)
[22]   Non-Markovian effect on the precision of parameter estimation [J].
Berrada, K. .
PHYSICAL REVIEW A, 2013, 88 (03)
[23]   Quantum metrology with SU(1,1) coherent states in the presence of nonlinear phase shifts [J].
Berrada, K. .
PHYSICAL REVIEW A, 2013, 88 (01)
[24]   Continuous-variable quantum probes for structured environments [J].
Bina, Matteo ;
Grasselli, Federico ;
Paris, Matteo G. A. .
PHYSICAL REVIEW A, 2018, 97 (01)
[25]   Quantum parameter estimation of the frequency and damping of a harmonic oscillator [J].
Binder, Patrick ;
Braun, Daniel .
PHYSICAL REVIEW A, 2020, 102 (01)
[26]   Quantum-limited metrology with product states [J].
Boixo, Sergio ;
Datta, Animesh ;
Flammia, Steven T. ;
Shaji, Anil ;
Bagan, Emilio ;
Caves, Carlton M. .
PHYSICAL REVIEW A, 2008, 77 (01)
[27]   Generalized limits for single-parameter quantum estimation [J].
Boixo, Sergio ;
Flammia, Steven T. ;
Caves, Carlton M. ;
Geremia, J. M. .
PHYSICAL REVIEW LETTERS, 2007, 98 (09)
[28]   Quantum metrology: Dynamics versus entanglement [J].
Boixo, Sergio ;
Datta, Animesh ;
Davis, Matthew J. ;
Flammia, Steven T. ;
Shaji, Anil ;
Caves, Carlton M. .
PHYSICAL REVIEW LETTERS, 2008, 101 (04)
[29]   Near-Heisenberg-Limited Atomic Clocks in the Presence of Decoherence [J].
Borregaard, J. ;
Sorensen, A. S. .
PHYSICAL REVIEW LETTERS, 2013, 111 (09)
[30]   Experimental quantum teleportation [J].
Bouwmeester, D ;
Pan, JW ;
Mattle, K ;
Eibl, M ;
Weinfurter, H ;
Zeilinger, A .
NATURE, 1997, 390 (6660) :575-579