POLISH SPACES OF BANACH SPACES: COMPLEXITY OF ISOMETRY AND ISOMORPHISM CLASSES

被引:0
|
作者
Cuth, Marek [1 ]
Dolezal, Martin [2 ]
Doucha, Michal [2 ]
Kurka, Ondrej [2 ]
机构
[1] Charles Univ Prague, Fac Math & Phys, Dept Math Anal, Sokolovska 83, Prague 8, Czech Republic
[2] Czech Acad Sci, Inst Math, Zitna 25, Prague 1, Czech Republic
关键词
Banach spaces; descriptive set theory; Hilbert space; Lp spaces; Baire category; DESCRIPTIVE COMPLEXITY; COANALYTIC FAMILIES; FACTORIZATION; UNIVERSAL; SETS;
D O I
10.1017/S1474748023000440
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the complexities of isometry and isomorphism classes of separable Banach spaces in the Polish spaces of Banach spaces, recently introduced and investigated by the authors in [14]. We obtain sharp results concerning the most classical separable Banach spaces.We prove that the infinite-dimensional separable Hilbert space is characterized as the unique separable infinite-dimensional Banach space whose isometry class is closed, and also as the unique separable infinite-dimensional Banach space whose isomorphism class is $F_\sigma $. For $p\in \left [1,2\right )\cup \left (2,\infty \right )$, we show that the isometry classes of $L_p[0,1]$ and $\ell _p$ are $G_\delta $-complete sets and $F_{\sigma \delta }$-complete sets, respectively. Then we show that the isometry class of $c_0$ is an $F_{\sigma \delta }$-complete set.Additionally, we compute the complexities of many other natural classes of separable Banach spaces; for instance, the class of separable $\mathcal {L}_{p,\lambda +}$-spaces, for $p,\lambda \geq 1$, is shown to be a $G_\delta $-set, the class of superreflexive spaces is shown to be an $F_{\sigma \delta }$-set, and the class of spaces with local $\Pi $-basis structure is shown to be a $\boldsymbol {\Sigma }<^>0_6$-set. The paper is concluded with many open problems and suggestions for a future research.
引用
收藏
页码:1919 / 1957
页数:39
相关论文
共 50 条
  • [21] Wavelets in Banach spaces
    Kisil, VV
    ACTA APPLICANDAE MATHEMATICAE, 1999, 59 (01) : 79 - 109
  • [22] On symplectic Banach spaces
    Castillo, Jesus M. F.
    Cuellar, Wilson
    Gonzalez, Manuel
    Pino, Raul
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2023, 117 (02)
  • [23] On symplectic Banach spaces
    Jesús M. F. Castillo
    Wilson Cuellar
    Manuel González
    Raúl Pino
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2023, 117
  • [24] Wavelets in Banach Spaces
    Vladimir V. Kisil
    Acta Applicandae Mathematica, 1999, 59 : 79 - 109
  • [25] An estimate of the Banach-Mazur distances between Hilbert spaces and Banach spaces
    Sánchez Pérez E.A.
    Del Campo Cañizares S.
    Rendiconti del Circolo Matematico di Palermo, 1997, 46 (3) : 465 - 476
  • [26] GENERALIZED HYBRID MAPPINGS IN HILBERT SPACES AND BANACH SPACES
    Hsu, Ming-Hsiu
    Takahashi, Wataru
    Yao, Jen-Chih
    TAIWANESE JOURNAL OF MATHEMATICS, 2012, 16 (01): : 129 - 149
  • [27] Isometric embedding of finite ultrametric spaces in Banach spaces
    Shkarin, SA
    TOPOLOGY AND ITS APPLICATIONS, 2004, 142 (1-3) : 13 - 17
  • [28] On sequential properties of Banach spaces, spaces of measures and densities
    Borodulin-Nadzieja, Piotr
    Plebanek, Grzegorz
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2010, 60 (02) : 381 - 399
  • [29] Banach spaces and Banach lattices of singular functions
    Bernal-Gonzalez, L.
    Fernandez-Sanchez, J.
    Martinez-Gomez, M. E.
    Seoane-Sepulveda, J. B.
    STUDIA MATHEMATICA, 2021, 260 (02) : 167 - 193
  • [30] Banach Lattice Structures and Concavifications in Banach Spaces
    Agud, Lucia
    Calabuig, Jose Manuel
    Juan, Maria Aranzazu
    Sanchez Perez, Enrique A.
    MATHEMATICS, 2020, 8 (01)