PyQBench: A Python']Python library for benchmarking gate-based quantum computers

被引:1
作者
Jalowiecki, Konrad [1 ]
Lewandowska, Paulina [1 ]
Pawela, Lukasz [1 ]
机构
[1] Polish Acad Sci, Inst Theoret & Appl Informat, Bałtycka 5, PL-44100 Gliwice, Poland
关键词
Quantum computing; Benchmarking quantum computers; Discrimination of quantum measurements; Discrimination of von Neumann measurements; Open-source; !text type='Python']Python[!/text] programming; SUPREMACY;
D O I
10.1016/j.softx.2023.101558
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We introduce PyQBench, an innovative open-source framework for benchmarking gate-based quantum computers. PyQBench can benchmark NISQ devices by verifying their capability of discriminating between two von Neumann measurements. PyQBench offers a simplified, ready-to-use, command line interface (CLI) for running benchmarks using a predefined family of measurements. For more advanced scenarios, PyQBench offers a way of employing user-defined measurements instead of predefined ones.
引用
收藏
页数:7
相关论文
共 48 条
[1]  
amazon, Introducing the Qiskit provider for Amazon braket
[2]  
Amazon Braket, About us
[3]   Quantum supremacy using a programmable superconducting processor [J].
Arute, Frank ;
Arya, Kunal ;
Babbush, Ryan ;
Bacon, Dave ;
Bardin, Joseph C. ;
Barends, Rami ;
Biswas, Rupak ;
Boixo, Sergio ;
Brandao, Fernando G. S. L. ;
Buell, David A. ;
Burkett, Brian ;
Chen, Yu ;
Chen, Zijun ;
Chiaro, Ben ;
Collins, Roberto ;
Courtney, William ;
Dunsworth, Andrew ;
Farhi, Edward ;
Foxen, Brooks ;
Fowler, Austin ;
Gidney, Craig ;
Giustina, Marissa ;
Graff, Rob ;
Guerin, Keith ;
Habegger, Steve ;
Harrigan, Matthew P. ;
Hartmann, Michael J. ;
Ho, Alan ;
Hoffmann, Markus ;
Huang, Trent ;
Humble, Travis S. ;
Isakov, Sergei V. ;
Jeffrey, Evan ;
Jiang, Zhang ;
Kafri, Dvir ;
Kechedzhi, Kostyantyn ;
Kelly, Julian ;
Klimov, Paul V. ;
Knysh, Sergey ;
Korotkov, Alexander ;
Kostritsa, Fedor ;
Landhuis, David ;
Lindmark, Mike ;
Lucero, Erik ;
Lyakh, Dmitry ;
Mandra, Salvatore ;
McClean, Jarrod R. ;
McEwen, Matthew ;
Megrant, Anthony ;
Mi, Xiao .
NATURE, 2019, 574 (7779) :505-+
[4]   Quantum tomography benchmarking [J].
Bantysh, B., I ;
Chernyavskiy, A. Yu ;
Bogdanov, Yu, I .
QUANTUM INFORMATION PROCESSING, 2021, 20 (10)
[5]   Towards a Quantum Benchmark Suite with Standardized KPIs [J].
Becker, Colin Kai-Uwe ;
Tcholtchev, Nikolay ;
Gheorghe-Pop, Ilie-Daniel ;
Bock, Sebastian ;
Seidel, Raphael ;
Hauswirth, Manfred .
2022 IEEE 19TH INTERNATIONAL CONFERENCE ON SOFTWARE ARCHITECTURE COMPANION (ICSA-C 2022), 2022, :160-163
[6]   Characterizing quantum supremacy in near-term devices [J].
Boixo, Sergio ;
Isakov, Sergei, V ;
Smelyanskiy, Vadim N. ;
Babbush, Ryan ;
Ding, Nan ;
Jiang, Zhang ;
Bremner, Michael J. ;
Martinis, John M. ;
Neven, Hartmut .
NATURE PHYSICS, 2018, 14 (06) :595-600
[7]  
Cornelissen A., 2021, arXiv
[8]   Validating quantum computers using randomized model circuits [J].
Cross, Andrew W. ;
Bishop, Lev S. ;
Sheldon, Sarah ;
Nation, Paul D. ;
Gambetta, Jay M. .
PHYSICAL REVIEW A, 2019, 100 (03)
[9]  
D-Wave Systems, ABOUT US
[10]  
github, Quantum volume in practice