Geometric Collective Model of Atomic Nuclei: Finite Element Method Implementations

被引:0
作者
Gusev, A. A. [1 ,2 ]
Chuluunbaatar, G. [1 ,3 ]
Vinitsky, S. I. [1 ,3 ]
Pogosyan, G. S. [1 ,4 ]
Deveikis, A. [5 ]
Hess, P. O. [6 ,7 ]
Hai, L. L. [8 ]
机构
[1] Joint Inst Nucl Res Dubna, Dubna, Russia
[2] Dubna State Univ, Dubna, Russia
[3] RUDN Univ, Peoples Friendship Univ Russia, Moscow, Russia
[4] Yerevan State Univ, Int Ctr Adv Studies, Yerevan, Armenia
[5] Vytautas Magnus Univ, Dept Appl Informat, Kaunas, Lithuania
[6] Univ Nacl Autonoma Mexico, Inst Ciencias Nucl, Circuito Exterior, Mexico City 04510, DF, Mexico
[7] Frankfurt Inst Adv Studies, D-60438 Frankfurt, Germany
[8] Ho Chi Minh City Univ Educ, Ho Chi Minh City, Vietnam
关键词
D O I
10.1134/S1063779623060151
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
The piecewise polynomial functions constructed from the multivariate Hermitian interpolation polynomials that are continuous together with derivatives on the boundaries of finite elements are used in implementations of the high-accuracy finite element method (FEM). The efficiency of our finite element schemes, algorithms and program GCMFEM implemented in Maple and Mathematica are demonstrated by reference calculations of the boundary value problems (BVPs) for the Geometric Collective Model (GSM) of atomic nuclei. The BVP for GSM is reduced also to the BVP for a system of ordinary differential equations, which is solved by program KANTBP 5M implemented in Maple and compared with solution of algebraic eigenval U (5) superset of O(3) superset of chain of groups.
引用
收藏
页码:1011 / 1017
页数:7
相关论文
共 21 条
  • [1] Abramowitz M., 1972, HDB MATH FUNCTIONS
  • [2] Berezin I. S., 1965, Computing Methods., VI
  • [3] Chuluunbaatar G., 2021, Commun. Comput. Inform. Sci, V1414, P152
  • [4] Construction of Multivariate Interpolation Hermite Polynomials for Finite Element Method
    Chuluunbaatar, Galmandakh
    Gusev, Alexander A.
    Chuluunbaatar, Ochbadrakh
    Gerdt, Vladimir P.
    Vinitsky, Sergue, I
    Derbov, Vladimir L.
    Gozdz, Andrzej
    Krassovitskiy, Pavel M.
    Luong Le Hai
    [J]. MATHEMATICAL MODELING AND COMPUTATIONAL PHYSICS 2019 (MMCP 2019), 2020, 226
  • [5] Symbolic-Numeric Algorithm for Calculations in Geometric Collective Model of Atomic Nuclei
    Deveikis, Algirdas
    Gusev, Alexander A.
    Vinitsky, Sergue, I
    Blinkov, Yuri A.
    Gozdz, Andrzej
    Pedrak, Aleksandra
    Hess, Peter O.
    [J]. COMPUTER ALGEBRA IN SCIENTIFIC COMPUTING (CASC 2022), 2022, 13366 : 103 - 123
  • [6] Deveikis A, 2020, LECT NOTES COMPUT SC, V12291, P206, DOI 10.1007/978-3-030-60026-6_12
  • [7] Rotational bands in the quadrupole-octupole collective model
    Dobrowolski, A.
    Mazurek, K.
    Gozdz, A.
    [J]. PHYSICAL REVIEW C, 2018, 97 (02)
  • [8] Consistent quadrupole-octupole collective model
    Dobrowolski, A.
    Mazurek, K.
    Gozdz, A.
    [J]. PHYSICAL REVIEW C, 2016, 94 (05)
  • [9] Microscopically derived potential energy surfaces from mostly structural considerations
    Ermamatov, M. J.
    Hess, Peter O.
    [J]. ANNALS OF PHYSICS, 2016, 371 : 125 - 158
  • [10] FINITE ELEMENT METHOD FOR SOLVING THE COLLECTIVE NUCLEAR MODEL WITH TETRAHEDRAL SYMMETRY
    Gusev, A. A.
    Vinitsky, S. I.
    Chuluunbaatar, O.
    Gozdz, A.
    Dobrowolski, A.
    Mazurek, K.
    Krassovitskiy, P. M.
    [J]. ACTA PHYSICA POLONICA B PROCEEDINGS SUPPLEMENT, 2019, 12 (03) : 589 - 594