Physics-data-driven intelligent optimization for large-aperture metalenses

被引:46
作者
Ha, Yingli [1 ,2 ,3 ]
Luo, Yu [1 ,2 ,3 ]
Pu, Mingbo [1 ,2 ,3 ,4 ]
Zhang, Fei [1 ,2 ,3 ]
He, Qiong [1 ,2 ]
Jin, Jinjin [1 ,2 ]
Xu, Mingfeng [1 ,2 ,3 ,4 ]
Guo, Yinghui [1 ,2 ,3 ,4 ]
Li, Xiaogang [5 ]
Li, Xiong [1 ,2 ,4 ]
Ma, Xiaoliang [1 ,2 ,4 ]
Luo, Xiangang [1 ,2 ,3 ,4 ]
机构
[1] Chinese Acad Sci, Natl Key Lab Opt Field Manipulat Sci & Technol, Chengdu 610209, Peoples R China
[2] State Sci, Chengdu 610209, Peoples R China
[3] Chinese Acad Sci, Res Ctr Vector Opt Fields, Inst Opt & Elect, Chengdu 610209, Peoples R China
[4] Univ Chinese Acad Sci, Sch Optoelect, Beijing 100049, Peoples R China
[5] Tianfu Xinglong Lake Lab, Chengdu 610299, Peoples R China
基金
中国国家自然科学基金;
关键词
intelligence method; physics-data-driven method; inverse design; large-aperture metalenses; ANGLE; METASURFACE; DESIGN;
D O I
10.29026/oea.2023.230133
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Metalenses have gained significant attention and have been widely utilized in optical systems for focusing and imaging, owing to their lightweight, high-integration, and exceptional-flexibility capabilities. Traditional design methods neglect the coupling effect between adjacent meta-atoms, thus harming the practical performance of meta-devices. The existing physical/data-driven optimization algorithms can solve the above problems, but bring significant time costs or require a large number of data-sets. Here, we propose a physics-data-driven method employing an "intelligent optimizer" that enables us to adaptively modify the sizes of the meta-atom according to the sizes of its surrounding ones. The implementation of such a scheme effectively mitigates the undesired impact of local lattice coupling, and the proposed network model works well on thousands of data-sets with a validation loss of 3x10-3. Based on the "intelligent optimizer", a 1-cm -diameter metalens is designed within 3 hours, and the experimental results show that the 1-mm-diameter metalens has a relative focusing efficiency of 93.4% (compared to the ideal focusing efficiency) and a Strehl ratio of 0.94. Compared to previous inverse design method, our method significantly boosts designing efficiency with five orders of magnitude reduction in time. More generally, it may set a new paradigm for devising large-aperture meta-devices.
引用
收藏
页数:11
相关论文
共 66 条
[11]   Recent advances in optical dynamic meta-holography [J].
Gao, Hui ;
Fan, Xuhao ;
Xiong, Wei ;
Hong, Minghui .
OPTO-ELECTRONIC ADVANCES, 2021, 4 (11)
[12]   Optical secret sharing with cascaded metasurface holography [J].
Georgi, Philip ;
Wei, Qunshuo ;
Sain, Basudeb ;
Schlickriede, Christian ;
Wang, Yongtian ;
Huang, Lingling ;
Zentgraf, Thomas .
SCIENCE ADVANCES, 2021, 7 (16)
[13]   Meta-Optics-Empowered Switchable Integrated Mode Converter Based on the Adjoint Method [J].
Ha, Yingli ;
Guo, Yinghui ;
Pu, Mingbo ;
Xu, Mingfeng ;
Li, Xiong ;
Ma, Xiaoliang ;
Zou, Fang ;
Luo, Xiangang .
NANOMATERIALS, 2022, 12 (19)
[14]   Deep neural networks for the evaluation and design of photonic devices [J].
Jiang, Jiaqi ;
Chen, Mingkun ;
Fan, Jonathan A. .
NATURE REVIEWS MATERIALS, 2021, 6 (08) :679-700
[15]   Free-Form Diffractive Metagrating Design Based on Generative Adversarial Networks [J].
Jiang, Jiaqi ;
Sell, David ;
Hoyer, Stephan ;
Hickey, Jason ;
Yang, Jianji ;
Fan, Jonathan A. .
ACS NANO, 2019, 13 (08) :8872-8878
[16]   Global Optimization of Dielectric Metasurfaces Using a Physics-Driven Neural Network [J].
Jiang, Jiaqi ;
Fan, Jonathan A. .
NANO LETTERS, 2019, 19 (08) :5366-5372
[17]   Multi-Channel Vortex Beam Generation by Simultaneous Amplitude and Phase Modulation with Two-Dimensional Metamaterial [J].
Jin, Jinjin ;
Pu, Mingbo ;
Wang, Yanqin ;
Li, Xiong ;
Ma, Xiaoliang ;
Luo, Jun ;
Zhao, Zeyu ;
Gao, Ping ;
Luo, Xiangang .
ADVANCED MATERIALS TECHNOLOGIES, 2017, 2 (02)
[18]   Broadband Chiro-Optical Effects for Futuristic Meta-Holographic Displays [J].
Khaliq, Hafiz Saad ;
Kim, Joohoon ;
Naeem, Taimoor ;
Riaz, Kashif ;
Badloe, Trevon ;
Seong, Junhwa ;
Akbar, Jehan ;
Zubair, Muhammad ;
Mehmood, Muhammad Qasim ;
Massoud, Yehia ;
Rho, Junsuk .
ADVANCED OPTICAL MATERIALS, 2022, 10 (22)
[19]   Intelligent metaphotonics empowered by machine learning [J].
Krasikov, Sergey ;
Tranter, Aaron ;
Bogdanov, Andrey ;
Kivshar, Yuri .
OPTO-ELECTRONIC ADVANCES, 2022, 5 (03)
[20]   Machine-learning-assisted metasurface design for high-efficiency thermal emitter optimization [J].
Kudyshev, Zhaxylyk A. ;
Kildishev, Alexander V. ;
Shalaev, Vladimir M. ;
Boltasseva, Alexandra .
APPLIED PHYSICS REVIEWS, 2020, 7 (02)